

Science Education and Application Journal (SEAJ) Program Studi Pendidikan IPA Universitas Islam Lamongan http://jurnalpendidikan.unisla.ac.id/index.php/SEAJ September, 2019. Vol. 1, No,2. p-ISSN: 2656-6672 e-ISSN: 2656-8365 pp. 84-97

Technologies and Materials for Carbon Dioxide Capture

¹Indri Susanti

¹Department of Science Education, Faculty of Teacher Training and Education, Lamongan Islamic University. Jl. Veteran No.53A Lamongan, Indonesia *Email: indri_susanti@unisla.ac.id*

Article Info	Abstract (10pt italic)
Article History	This paper was aims to review the technologies and materials for CO2 capture.
Received: 06 September	Carbon dioxide is one of the triggers for the greenhouse effect and global
2019	warming. Some methods to reduce CO2 are separation technologies include air
Revised: 15 September	capture, CO2 Capture Utilization and Storage (CCUS) and CO2 Capture and
2019	Storage (CCS) technology. CCS technology have several systems namely post-
Published: 30 September	combution, pre-combustion and oxy-fuel combustion. Post-combution systems
2019	can be done in various systems including absorption, adsorption, membrane, and
Keywords	cryogenic. Adsorption proses for CO2 capture applied with porous material such
Technology; Material; CO ₂	us mesopore silica, zeolite, carbon, MOF dan COF. This review was described
Adsorption	the advantages and disadvantages of each technology for CO2 capture.
	Materials for CO2 adsorption also descibed in this review.

Sitasi: Susanti, Indri. (2019). Technologies and Materials for Carbon Dioxide Capture. Science Education and Application Journal (SEAJ). Vol. 1, No. 2: 84-97

PENDAHULUAN (INTRODUCTION)

Carbon dioxide is one of the triggers for the greenhouse effect and global warming. The concentration of CO_2 gas in the atmosphere in 2014 reached 400 ppm, the amount of which was much greater during the pre-industrialization era (Oh, 2010). Increasing the concentration of CO_2 continuously in the atmosphere will limit the ability of plants and seas to absorb CO_2 gas, so that carbon dioxide gas will be trapped in the earth's atmosphere and cause global warming which is characterized by rising earth temperatures, shifting climate, and rising sea levels (Li, J.-R.dkk., 2011: Yang, H. dkk., 2008). These problems must be addressed immediately so that global warming can be reduced.

Some methods to reduce CO_2 gas problems are separation technologies include air capture, CCUS (CO₂ Capture Utilization and Storage), and CCS (Carbondioxide Capture and Storage) technology. Technology with several systems, namely post-combution, precombustion and oxy-combustion (Figueroa, 2008). Post-combution systems can be done in various ways including absorption, adsorption, membrane, and cryogenic.

Description of the operation and explanation of some of these technologies will be discussed in this paper. The advantages and disadvantages of each technology will also increase the efficiency of technology that is promising for the future. The objectives of this paper is to review the technologies and materials for CO_2 capture.

METODE (METHODS)

Carbon Dioxide Separation Methods

The problem of carbon dioxide can be overcome through carbon dioxide gas separation technology as shown in Table 1.

Tecnology	Explanation	Reference
Air Capture	 Capture CO₂ gas up to 52% The use of amines as gas binders is considered unsafe 	Kintisch, E., (2014). <i>Can</i> <i>Sucking CO</i> ₂ <i>Out of the</i> <i>Atmosphere Really Work</i> , Columbia: MIT Technology Review.
CCUS (CO2 Capture Utilization and Storage)	 Inject CO₂ on the inside of an underground adsorbent Dangerous when the gas pipe leaks causing contamination of ground water Affects drinking water TDS 	Bielicki, J. M. dkk., (2014). Causes and financial consequences of geologic CO2 storage reservoir leakage and interference with other subsurface resources. <i>International Journal of</i> <i>Greenhouse Gas Control</i> , 20. 272-284.
CCS (CO ₂ Capture and Storage)	 Separation of combustion CO₂ gas Derivative systems: pre-combustion, post combustion and oxy fuel combustion. 	Bennaucer, K., Gielen, D., Kerr, T. & Tam, C., (2008). CO2 Capture and Storage. <i>International</i> <i>Energy Agency</i> , p. 15.

Tabel 1. Gas Separation Technologies

Based on Table 1, CCS technology was chosen and reviewed for carbon dioxide gas separation because this technology has low risk of danger and cost. The three systems derived from CCS technology are pre-combustion, post combustion and oxy fuel combustion was described in Table 2.

In pre-combustion capture, carbon and carbon dioxide in fossil fuels are separated before combustion. This fuel source is chemically converted into a stream of two gases, carbon dioxide and CO_2 . The process of Pre-combustion Capture^[9] is shown in Figure 1.

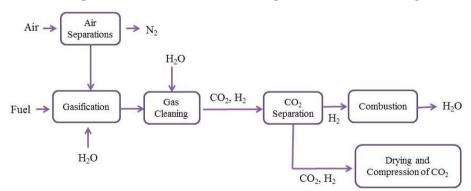


Figure 1. Flow chart of Pre-combustion Capture process Tabel 2. CO₂ Gas Separation Technologies

Technology of CO ₂ Sorption	Advantages	Disadvantages	Reference
pre-combustion	Produces synthetic gas	Synthetic gases (syngas)	Li, JR.dkk.,
	(syngas) rich in	produced can cause	(2011). Carbon
	hydrogen.	corrosion.	dioxide capture-

Science Education and Application Journal (SEAJ) Pendidikan IPA Universitas Islam Lamongan, Juni 2019. Vol. 1, No.1 | 85

Technology of CO ₂ Sorption	Advantages	Disadvantages	Reference
	Capable of capturing almost 91.6% of CO ₂ emissions.	The process is more complicated and the cost to build a system is very expensive.	related gas adsorption and separation in metal-organic frameworks. <i>Coordination</i> <i>Chemistry</i> <i>Reviews</i> , 255. 1791-1823.
oxy fuel combustion	The CO ₂ separation process is easier because it uses methods such as absorption, membrane, cryogenic and adsorption. Cheaper operating costs	Requires quite high energy when using cryogenic and membrane methods	Miller, B.G., (2011) CO2 Capture dan Storage, In <i>Clean</i> <i>Coal Engineering</i> <i>Technology</i> , Butterworth- Heinemann, Boston, 483–511
post combustion	The results of the exhaust gas in the form of CO ₂ and water (H ₂ O) so no CO ₂ separation process is needed. Capable of capturing 92.6% CO ₂ emissions.	Requires very high costs during the initial air separation process. Requires up to 98% pure oxygen so the operating costs are very high.	Figueroa J. D., Fout T., Plasynski S., Mc. Ilvried H. dan Srivastava R. D., (2008), Advances in CO2 capture technology, The U.S. Department of Energy's Carbon Sequestration Program, <i>International</i> <i>Journal of</i> <i>Greenhouse Gas</i> <i>Contro</i> 1, 21. 9–20

In Oxy-fuel Combustion is simpler than pre-combustion capture because the oxidation process uses oxygen so it only produces CO_2 and H_2O . Because the fuel used in the combustion process only produces CO_2 and H_2O , there is no need to separate the exhaust gas anymore, so that the CO_2 gas produced from this process can be directly captured. The process of Oxy-fuel Combustion^[9] is shown in Figure 2.

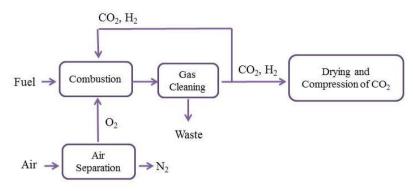


Figure 2. Flow chart of Oxy-fuel Combustion process

The last process is the post-combustion capture process. In this process, separating CO_2 is easier because it uses methods such as adsorption, membrane, cryogenic, and adsorption. The process of Post-combustion Capture (Miller, 2011) is shown in Figure 3.

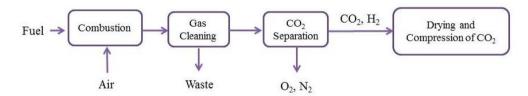


Figure 3. Flow chart of Post-combustion Capture process

The use of post-combustion capture technology has been more developed because CO_2 separation methods are simpler and more efficient than the two processes above. The use of cryogenic and membrane methods requires high energy, but this can be avoided by choosing absorbs or adsorption methods to reduce operating costs. At present, the most commonly used carbon dioxide (CO_2) separation method in the post-combustion capture technology includes absorption, cryogenic, membranes, and adsorption. A comparison of the four carbon dioxide separation methods can be seen in Table 3.

Methods	Explanation	Energy Needed (MJ/Kg CO ₂)	Pure Limit	The unit of time reaches the pure limit	Reference
Absorption	- The interaction between adsorbent and adsorbate $(CO_2 \text{ gas})$ is very strong so it takes very high energy to separate the adsorbent and	0.5 - 4.5	99	Hour	 Li, JR.dkk., (2011). Carbon dioxide capture- related gas adsorption and separation in metal-organic frameworks. <i>Coordination</i> <i>Chemistry Reviews</i>, 255. 1791-1823. Pirngruber G. D., Guillou F., Gomez A. dan Clausse M., (2013), A theoretical analysis of the energy

Tabel 3. CO₂ Gas Separation System

Methods	Explanation	Energy Needed (MJ/Kg CO ₂)	Pure Limit	The unit of time reaches the pure limit	Reference
	adsorbate again. - The process is more complicated because CO ₂ gas must be converted to solution using chemical solvents.				 consumption of post- combustion CO₂ capture processes by temperature swing adsorption using solid sorbents", <i>International Journal of</i> <i>Greenhouse Gas Control</i>, 14. 74–83 3. Smith, N. dkk., (2013). Performance and Costs of CO₂ Capture at Gas Fired Power Plants. <i>Energy</i> <i>Procedia</i>, 37. 2443-2452.
Adsorbtion	 Selectivity of some materials such as zeolites is very high against CO₂ gas. When adsorption chemically requires high energy during CO₂ desorption 	0.1 – 1	95	Minute	 Li, JR.dkk., (2011). Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks. <i>Coordination Chemistry</i> <i>Reviews</i>, 255. 1791-1823. Smith, N. dkk., (2013). Performance and Costs of CO₂ Capture at Gas Fired Power Plants. <i>Energy</i> <i>Procedia</i>, 37. 2443-2452. Cheung, O. dkk., (2013). "Adsorption kinetics for CO₂ on highly selective zeolites NaKA and nano- NaKA". <i>Ahallied Energy</i>, 112, hal. 1326-1336. Pham T. D., Xiong R., Sdanler S. I. dan Lobo R. F., (2014) Experimental dan computational studies on the adsorption of CO₂ dan N₂ on pure silica zeolites. <i>Microporous dan</i> <i>Mesoporous Materials</i>, 185. 157–166.
Membrane	- Selectivity for CO ₂ gas is still relatively low for	0.5 – 16.56	< 40	Minute	1. Li, JR.dkk., (2011). Carbon dioxide capture- related gas adsorption and separation in metal-organic frameworks. <i>Coordination</i>

Science Education and Application Journal (SEAJ) Pendidikan IPA Universitas Islam Lamongan, Juni 2019. Vol. 1, No.1 | 88

Methods	Explanation	Energy Needed (MJ/Kg CO ₂)	Pure Limit	The unit of time reaches the pure limit	Reference
	commercial use - Requires high temperatures to get high CO ₂ purity				 Chemistry Reviews, 255. 1791-1823. Smith, N. dkk., (2013). Performance and Costs of CO₂ Capture at Gas Fired Power Plants. <i>Energy</i> <i>Procedia</i>, 37. 2443-2452 Kazama, S. dan Haraya, K., (2013), Optimization of CO₂ concentration captured by membrane technology - Possibility of reduction in CO₂ capture energy dan cost, <i>Energy Procedia</i>, 37. 969–975.
Cryogenic	 The temperature used is quite low between 103°C -122°C Less efficient because CO₂ has to be converted into a liquid with a very low temperature 	0.4	99	Hour	 Li, JR.dkk., (2011). Carbon dioxide capture- related gas adsorption and separation in metal-organic frameworks. <i>Coordination</i> <i>Chemistry Reviews</i>, 255. 1791-1823. Miller, B.G., (2011) CO₂ Capture dan Storage, In <i>Clean Coal Engineering</i> <i>Technology</i>, Butterworth- Heinemann, Boston, 483– 511. Smith, N. dkk., (2013). Performance and Costs of CO₂ Capture at Gas Fired Power Plants. <i>Energy</i> <i>Procedia</i>, 37. 2443-2452.

The absorption and adsorption methods require lower operational costs compared to cryogenic or membrane methods. In the membrane method, selectivity to CO_2 is still very low compared to adsorption, whereas the cryogenic method requires high energy to convert $CO_{2(g)}$ to $CO_{2(l)}$ (Miller, 2011). Absorption methods generally use chemical solvents such as fluorinated solvents, ammonia solutions and ionic liquids (Li, 2011) and require high energy because of the interaction between adsorbents (chemical solvents) and adsorbate (CO_2 gas) in the form of chemical bonds, making it very difficult to separate when adsorbent regeneration. While the adsorption method uses materials such as porous silica, carbon and zeolites (Li,

2011). Based on Table 3, the adsorption method has a lower pure limit than the absorption and cryogenic methods, but has a faster time to reach the pure limit that is in units of minutes. The pure limit is the maximum purity limit obtained by using the CO_2 separation method. In addition, the adsorption method only requires lower energy when capturing CO_2 than all methods, so it is more profitable.

HASIL DAN PEMBAHASAN (RESULT AND DISCUSSION) I. Materials for Carbon Dioxide Adsorption

Some materials which have been developed for carbon dioxide adsorption are porous materials such as mesopore silica, zeolites, carbon, MOF (metal organic framework), and COF (covalent organic framework). Several studies showing the effect of adsorption type and pore diameter on the carbon dioxide adsorption capacity can be seen in Table 4.

		Adsorption	Pore	Pore	Adsorption	Condit	ion	
Mate	erial	Туре	Diameter (nm)	Volume (cm ³ /g)	Capacity (mmol/g)	Temperature (°C)	Pressure (bar)	Reference
Mesopore Silica	MCM- 48	Chemisorption	2.87	1.20	1.14	25	1	Zeleňák V., Badaničová M., Halamová D., Čejka J., Zukal A., Murafa N. danGoerigk G., (2008), Amine- modified ordered mesoporous silica: Effect of pore size on carbon dioxide capture, <i>Chemical</i> <i>Engineering</i> <i>Journal</i> , 144. 336– 342.
	SBA-16	Chemisorption	4.1	0.75	2.93	75	1	Son W.J., Choi J.S. dan Ahn W.S., (2008), Adsorptive removal of carbon dioxide using polyethyleneimine- loaded mesoporous silica materials, <i>Microporous dan</i> <i>Mesoporous</i> <i>Materials</i> , 113. 31– 40.
Carbon	Carbon monolite	Physisorption	2	0.21	3.13	25	1	Hao G.P., Li W.C., Qian D. dan Lu A.H., (2010),

Tabel 4. Materials for CO2 Capture

Science Education and Application Journal (SEAJ) Pendidikan IPA Universitas Islam Lamongan, Juni 2019. Vol. 1, No.1 | 90

				Adsorption	Condit	ion		
Mate	erial	Adsorption Type	Diameter (nm)	Volume (cm ³ /g)	Capacity (mmol/g)	Temperature (°C)	Pressure (bar)	Reference
								Rapid Synthesis of Nitrogen-Doped Porous Carbon Monolith for CO ₂ Capture, <i>Adv.</i> <i>Material</i> , 22. 853– 857.
Zeolite	Zeolite 13X	Physisorption	0.40	0.27	6.00	25	15	Siriwardane R., Shen M., Fisher E., Poston J. danShamsi A,. (2001), Adsorption dan desorption of CO ₂ on solid sorbents, <i>Journal</i> of <i>Energy &</i> <i>Environmental</i> <i>Research</i> , 1. 19–22.
	Zeolite NaA	Physisorption	0.66	0.30	4.21	0	1	Cheung, O. dkk., (2013). "Adsorption kinetics for CO ₂ on highly selective zeolites NaKA and nano-NaKA". <i>Ahallied Energy</i> , 112, hal. 1326- 1336.
	MOF- 177	Chemisorption	0.43	1.59	33.50	25	32	Millward, A.R. danYaghi, O.M.,
MOF	MOF-5	Chemisorption	0.59	0.31	2.10	25	1	(2005), "Metal–Organic Frameworks with Exceptionally High Capacity for Storage of Carbon Dioxide at Room Temperature", <i>J.</i> <i>Am. Chem. Soc.</i> , 127. 17998–17999.

			Adsorption	Pore			Conditi	ion	
	Mate	rial	Туре	Diameter (nm)	Volume (cm ³ /g)	Capacity (mmol/g)	Temperature (°C)	Pressure (bar)	Reference
CO	DF	COF- 102	Chemisorption	0.43	1.55	27.00	25	55	Furukawa, H. danYaghi, O. M., (2009), Storage of hydrogen, methane, dan carbon dioxide in highly porous covalent organic frameworks for clean energy applications, <i>Journal of the</i> <i>American</i> <i>Chemical Society</i> , 131. 8875–8883.

Mesopore silica material, MOF, and COF have a type of chemical adsorption, while carbon and zeolites are physical adsorption. Chemical adsorption requires relatively high pressure to adsorp CO_2 gas in MOF and COF materials. However, when chemical adsorption uses relatively low pressures in mesopore silica material, the adsorption ability will decrease. In addition, chemical adsorption requires high energy during desorption because there is a chemical bond between carbon dioxide and material sorbent, it could difficult to release from CO_2 capture material (Miller, 2011). In the physical adsorption on carbon and zeolite materials, the temperature and pressure used are relatively low and the carbon dioxide adsorbed is also more abundant than mesopore silica. Physical adsorption is reversible and tends to require low energy during desorption.

Besides the type of adsorption, another parameter that affects the adsorption of carbon dioxide is the pore diameter. Based on Table 4, mesopore silica has a larger pore diameter than zeolite, carbon, MOF and COF material. Carbon dioxide has a kinetic diameter of 3.3 Å (0.33 nm)^[21]. The materials which suitable for CO₂ adsorption are those that have a diameter between 0.4 nm - 2 nm, and will be optimal if adsorbed by a material with a pore diameter of 0.4-0.6 nm. For this reason, zeolite, carbon, MOF and COF materials have a pore diameter suitable for CO₂ adsorption.

Another thing of affects CO_2 adsorption is the adsorption capacity. Materials that have a large adsorption capacity for CO_2 are carbon, zeolite, MOF, and COF. CO_2 adsorption capacity on the MOF and COF greater than on the carbon and zeolites, nevertheless COF and MOF are chemical adsorption where the adsorption conditions require high pressure between 30 - 50 bar. While carbon and zeolite only require 1 bar of pressure and room temperature. It causes zeolite and carbon more to be developed as CO_2 capture material. Several studies using zeolite and carbon for CO_2 Adsorption are shown in Table 5 and Table 6.

Carbon	Adsorption	Condition	CO ₂ Adsorption		
Material	Temperature (°C)	Pressure	Capacity (%.wt)	Reference	
	16	100KPa	1.5	Saha D., Deng S.G., (2010), Adsorption	
Mesopore Carbon	16	1000KPa	3	equilibrium and kinetics of CO_2 , CH_4 , N_2O , and NH_3 on ordered mesoporous carbon, J. Colloid Interface Sci. 345. 402-409	
Micropore Carbon			4	Liu Y., Yang Y., Zhou Y., Zhang Y., Gao M. and Pan H. (2012) Hydrogen storage properties and mechanisms of the Mg(BH4)2– NaAlH4 system. <i>International Journal</i> of Hydrogen Energy 37. 17137–17145	
	16	100KPa	2.27	Z.J. Zhang, W. Zhang, X. Chen, Q.B.	
Activated	16	3000KPa	21.29	Xia, Z. Li, (2010) . Adsorption of CO ₂ on	
Carbon	16	0.1-0.4 bar	0.6-1.5	zeolite 13X and activated carbon with	
	55	0.1-0.4 bar	0.25-0.8	higher surface area, Sep. Sci. Technol. 45. 710–719.	
Activated Carbon ZTC-Y	30	1 bar	2.72	Susanti, I., and Widiastuti, N.	
Carbon ZTC-Y	30	1 bar	1.07	(2019). Activation of Zeolite-Y Templated Carbon with KOH to Enhance the CO ₂ Adsorption Capacity. <i>Malaysian Journal of</i> <i>Fundamental and</i> <i>Applied Science</i> (<i>MJFAS</i>), 15 (2). 240-253.	

Tabel 5. Carbon Materials for CO₂ Capture

	Adsorption C	ondition			
Zeolite Type	Temperature (°C)	Pressure (bar)	CO ₂ Adsorption Capacity (%.wt)	Reference	
	16	0.1-0.4	2.8-2.9	Cavenati, S., Grande, C. A. & Rodrigues, A. E., (2004).	
	50	0.1-0.4	1.43-2.49	Adsorption Equilibrium of Methane, Carbon Dioxide, and Nitrogen on Zeolite 13X at High Pressure. <i>Journal of</i> <i>Chemical Engineering</i> , 49. 1095-1101.	
NaX	25	1	4.00	Walton K. S., Abney M. B. dan Douglas LeVan M., (2006), CO ₂ adsorption in Y dan X zeolites modified by alkali metal cation exchange, <i>Microporous dan</i> <i>Mesoporous Materials</i> , 91. 78–84.	
NaY	50	0.1-0.4	0.45-1.17	Cavenati, S., Grande, C. A. & Rodrigues, A. E., (2004). Adsorption Equilibrium of Methane, Carbon Dioxide, and Nitrogen on Zeolite 13X at High Pressure. <i>Journal of</i> <i>Chemical Engineering</i> , 49. 1095-1101.	
	30	1	4.00	Yu L., Gong J., Zeng C. dan Zhang L., (2013), Synthesis of binderless zeolite X microspheres dan their CO ₂ adsorption properties, <i>Separation dan Purification</i> <i>Technology</i> , 118. 188–195.	
NaA	30	1	2.70	Zukal A., Arean C. O., Delgado M. R., Nachtigall P., Pulido A., Mayerová J. danČejka J., (2011), Combined volumetric, infrared spectroscopic dan theoretical investigation of CO ₂ adsorption on Na-A zeolite, <i>MicroporousdanMesoporous</i> <i>Materials</i> , 146. 97–105.	

Tabel 6. Zeolite Materi	als for CO ₂ Capture
-------------------------	---------------------------------

Zeolite Type	Adsorption Condition			
	Temperature (°C)	Pressure (bar)	CO ₂ Adsorption Capacity (%.wt)	Reference
	0	1	4.21	Cheung, O. dkk., (2013). "Adsorption kinetics for CO ₂ on highly selective zeolites NaKA and nano-NaKA". <i>Ahallied Energy</i> , 112, hal. 1326-1336.
NaKA	0	1	3.77	Cheung, O. dkk., (2013). "Adsorption kinetics for CO ₂ on highly selective zeolites NaKA and nano-NaKA". <i>Ahallied Energy</i> , 112, hal. 1326-1336.
CaX	25	1	17.55	Yu L., Gong J., Zeng C. dan Zhang L., (2013), Synthesis of binderless zeolite X microspheres dan their CO ₂ adsorption properties, <i>Separation dan Purification</i> <i>Technology</i> , 118. 188–195.
13X	25	1	4.50	Siriwardane R., Shen M., Fisher E., Poston J. danShamsi A,. (2001), Adsorption dan desorption of CO ₂ on solid sorbents, <i>Journal of Energy &</i> <i>Environmental Research</i> , 1. 19–22.
	25	15	6.00	McEwen, J., Hayman, JD. & Yazaydin, A. O., (2013). A comparative study of CO ₂ , CH4 and N2 adsorption in ZIF-8, Zeolit-13X and BPL activated carbon. <i>Chemical</i> <i>Physics</i> , 412. 72-76.

KESIMPULAN (CONCLUSION)

Based on the description of technology and material for CO_2 adsorption above, it can be concluded that CO_2 adsorption can be carried out through absorption, adsorption, membrane and cryogenic technologies. From these techniques, the adsorption method is considered more efficient and can be applied with various porous materials such as mesoporous silica, zeolite, carbon, MOF and COF. Porous material has each advantages and disadvantages. Zeolites and carbon are more interesting to develop due to zeolites have good porosity but a small surface area and carbon has a large surface area but irregular porosity. There have been several studies that have combined carbon and zeolite materials into zeolite-templated carbon with synthetic zeolite and resulted in increased adsorption capacity.

SARAN (SUGGESTIONS)

One proposal that can be done on further research in the development of adsoption materials is combine zeolite and carbon into zeolite/carbon composite. Zeolite/carbon composite materials can be synthesized with basic materials from nature, such as rice husks, bagasse and others. By utilizing natural waste as a basic material for making composites material, the cost of making zeolite/carbon composites material becomes cheaper and the waste of natural materials can be increased in value.

UCAPAN TERIMA KASIH (ACKNOWLEDGMENT)

Author would like to Universitas Islam Lamongan, East Java, Indonesia for providing research facility and help for this paper

DAFTAR PUSTAKA (REFERENCES)

- [1] Oh, T.H. (2010). Carbon Capture and Storage Potential in Coal-fired Plant in Malaysiaa Review *Renewable Sustainable Energy Rev.* 14. 2697–2709.
- [2] Li, J.-R.dkk., (2011). Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks. *Coordination Chemistry Reviews*, 255. 1791-1823.
- [3] Yang, H. dkk., (2008). Progress in carbon dioxide and capture: A review. *Journal of Enviromental Sciences*, 20. 14-27.
- [4] Figueroa J. D., Fout T., Plasynski S., Mc. Ilvried H. dan Srivastava R. D., (2008), Advances in CO₂ capture technology, The U.S. Department of Energy's Carbon Sequestration Program, *International Journal of Greenhouse Gas Control*, 21. 9–20.
- [5] Kintisch, E., (2014). Can Sucking CO₂ Out of the Atmosphere Really Work, Columbia: MIT Technology Review.
- [6] Bielicki, J. M. dkk., (2014). Causes and financial consequences of geologic CO₂ storage reservoir leakage and interference with other subsurface resources. *International Journal of Greenhouse Gas Control*, 20. 272-284.
- [7] Bennaucer, K., Gielen, D., Kerr, T. & Tam, C., (2008). CO₂ Capture and Storage. *International Energy Agency*, p. 15.
- [8] Li, J.-R.dkk., (2011). Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks. *Coordination Chemistry Reviews*, 255. 1791-1823.
- [9] Miller, B.G., (2011) CO₂ Capture dan Storage, In *Clean Coal Engineering Technology*, Butterworth-Heinemann, Boston, 483–511.
- [10] Pirngruber G. D., Guillou F., Gomez A. dan Clausse M., (2013), A theoretical analysis of the energy consumption of post-combustion CO₂ capture processes by temperature swing adsorption using solid sorbents", *International Journal of Greenhouse Gas Control*, 14. 74–83.
- [11] Smith, N. dkk., (2013). Performance and Costs of CO₂ Capture at Gas Fired Power Plants. *Energy Procedia*, 37. 2443-2452.
- [12] Cheung, O. dkk., (2013). "Adsorption kinetics for CO₂ on highly selective zeolites NaKA and nano-NaKA". *Ahallied Energy*, 112, hal. 1326-1336.
- [13] Pham T. D., Xiong R., Sdanler S. I. dan Lobo R. F., (2014) Experimental dan computational studies on the adsorption of CO₂ dan N₂ on pure silica zeolites. *Microporous dan Mesoporous Materials*, 185. 157–166.

- [14] Kazama, S. dan Haraya, K., (2013), Optimization of CO₂ concentration captured by membrane technology - Possibility of reduction in CO₂ capture energy dan cost, *Energy Procedia*, 37. 969–975.
- [15] Son W.J., Choi J.S. dan Ahn W.S., (2008), Adsorptive removal of carbon dioxide using polyethyleneimine-loaded mesoporous silica materials, *Microporous dan Mesoporous Materials*, 113. 31–40.
- [16] Zeleňák V., Badaničová M., Halamová D., Čejka J., Zukal A., Murafa N. danGoerigk G., (2008), Amine-modified ordered mesoporous silica: Effect of pore size on carbon dioxide capture, *Chemical Engineering Journal*, 144. 336–342.
- [17] Hao G.P., Li W.C., Qian D. dan Lu A.H., (2010), Rapid Synthesis of Nitrogen-Doped Porous Carbon Monolith for CO₂ Capture, *Adv. Material*, 22. 853–857.
- [18] Siriwardane R., Shen M., Fisher E., Poston J. danShamsi A, (2001), Adsorption dan desorption of CO₂ on solid sorbents, *Journal of Energy & Environmental Research*, 1. 19–22.
- [19] Millward, A.R. danYaghi, O.M., (2005), "Metal–Organic Frameworks with Exceptionally High Capacity for Storage of Carbon Dioxide at Room Temperature", *J. Am. Chem. Soc.*, 127. 17998–17999.
- [20] Furukawa, H. danYaghi, O. M., (2009), Storage of hydrogen, methane, dan carbon dioxide in highly porous covalent organic frameworks for clean energy applications, *Journal of the American Chemical Society*, 131. 8875–8883.
- [21] Susanti, Indri. (2019). Polysulfone Membrane with Zeolite Filler for CO₂/CH₄ Gas Separation: a Review. *Science Education and Application Journal (SEAJ)*. 1 (1). 10-16.
- [22] Saha D., Deng S.G., (2010), Adsorption equilibrium and kinetics of CO₂, CH₄, N₂O, and NH₃ on ordered mesoporous carbon, J. Colloid Interface Sci. 345. 402-409.
- [23] Z.J. Zhang, W. Zhang, X. Chen, Q.B. Xia, Z. Li, (2010) . Adsorption of CO₂ on zeolite 13X and activated carbon with higher surface area, Sep. Sci. Technol. 45. 710–719.
- [24] Liu Y., Yang Y., Zhou Y., Zhang Y., Gao M. and Pan H. (2012) Hydrogen storage properties and mechanisms of the Mg(BH4)2–NaAlH4 system. *International Journal* of Hydrogen Energy 37. 17137–17145
- [25] Susanti, I., and Widiastuti, N. (2019). Activation of Zeolite-Y Templated Carbon with KOH to Enhance the CO₂ Adsorption Capacity. *Malaysian Journal of Fundamental and Applied Science (MJFAS)*, 15 (2). 240-253.
- [26] Cavenati, S., Grande, C. A. & Rodrigues, A. E., (2004). Adsorption Equilibrium of Methane, Carbon Dioxide, and Nitrogen on Zeolite 13X at High Pressure. *Journal of Chemical Engineering*, 49. 1095-1101.
- [27] Walton K. S., Abney M. B. dan Douglas LeVan M., (2006), CO₂ adsorption in Y dan X zeolites modified by alkali metal cation exchange, *Microporous dan Mesoporous Materials*, 91, 78–84.
- [28] Yu L., Gong J., Zeng C. dan Zhang L., (2013), Synthesis of binderless zeolite X microspheres dan their CO₂ adsorption properties, *Separation dan Purification Technology*, 118. 188–195.
- [29] Zukal A., Arean C. O., Delgado M. R., Nachtigall P., Pulido A., Mayerová J. danČejka J., (2011), Combined volumetric, infrared spectroscopic dan theoretical investigation of CO₂ adsorption on Na-A zeolite, *MicroporousdanMesoporous Materials*, 146. 97–105.
- [30] McEwen, J., Hayman, J.-D. & Yazaydin, A. O., (2013). A comparative study of CO₂, CH4 and N2 adsorption in ZIF-8, Zeolit-13X and BPL activated carbon. *Chemical Physics*, 412. 72-76