Dynamical Analysis and Optimal Control of SVIR Hepatitis B Model Spread in Malang

Authors

  • Pangestuti Prima Darajat Universitas Islam Raden Rahmat Malang
  • Bagus Seta Inba Cipta Universitas Islam Raden Rahmat Malang
  • Iqbal Farhan Nuruddin Universitas Islam Raden Rahmat Malang
  • Davina Aulia Iqbiyana Balqis Universitas Islam Raden Rahmat Malang

DOI:

https://doi.org/10.30736/voj.v5i2.698

Keywords:

Stability Analysis, Optimal Control, HBV Epidemic Model, Saturated Incidence Rate, Numerical Simulation

Abstract

This research formulates a new mathematical model that describes the dynamics of the spread and control of Hepatitis B, especially in Malang, East Java. The mathematical model that will be constructed considers various factors in Malang, mainly the saturated Incidence rate and vaccinations carried out on newborns. The equilibrium point of the system is determined and its stability is dynamically analized. The results of this analysis will determine the future prediction of the spread of Hepatitis B in Malang. Furthermore, a control strategy is proposed that is Clean and Healthy Living behavior (PHBS). The control strategy is analysed using optimal control theory. Pontryagin’s principle is used as a condition to obtain optimal conditions. Forward-backwards Sweep method in combination with the fourth order Runge-Kutta method is used to solve the optimal system.

Downloads

Download data is not yet available.

Author Biography

Pangestuti Prima Darajat, Universitas Islam Raden Rahmat Malang

Dosen Fakultas Sains dan Teknologi, Universitas Islam Raden Rahmat Malang sejak 2016

References

Alligood, K. T., Sauer, T. D., & Yorke, J. A. (2000). An Introduction to dynamical system. New York: Springer-Verlag.

Aulani, F., Kusumawinahyu, W. M., & Darti, I. (2021). Dynamical Analysis and Parameter Estimation of a Model of Hepatitis B Disease Spread in Malang. The Journal of Experimental Life Science, XI (3), 84-88.

Darajat, P. P., & Husadaningsih, T. (2019). Kontrol Optimal Pada Model Penyebaran Virus Komputer dengan Klasifikasi Pengamanan. E-Jurnal Matematika, 8(4), 253-258.

Darajat, P. P., Suryanto, A., & Widodo, A. (2016). Optimal Control On The Spread of SLBS Computer Virus Model. International Journal of Pure and Apllied Mathematic, 107(3), 749-758.

Djilali, S., & Bentout, S. (2021). Global dynamics of SVIR epidemic model with distributed delay and imperfect vaccine. Results in Physics, 25(104245), 1-7.

Golgeli, M. (2019). A Mathematical Model Of Hepatitis B Transmission In Turkey. Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics, 68(2), 1586-1595.

Kesehatan, K. (2012). Hepatitis Masalah Kesehatan Dunia. Kementerian Kesehatan RI.

Kesehatan, K. (2014). Situasi dan Analisis Hepatitis, INFODATIN: Pusat Data dan Informasi Kementerian Kesehatan RI. Kementerian Kesehatan RI.

Khan, T., Ullah, Z., Ali, N., & Zaman, G. (2019). Modeling and control of the hepatitis B virus spreading using an epidemic model. Chaos, Solitons and Fractals Nonlinear Science, and Nonequilibrium and Complex Phenomena(124), 1-9.

Khan, T., Zaman, G., & Chohan, M. I. (2018). The transmission dynamic of different hepatitis B-infected individuals with the effect of hospitalization. JOURNAL OF BIOLOGICAL DYNAMICS, XII(1), 611-631.

Lenhart, S., & Workman, J. T. (2015). Optimal Control Apllied to Biological Models. New York: Taylor and Francis.

Murray, J. D. (2002). Mathematical Biology: An Introduction to Dynamical System . Berlin: Springer-Verlag.

Oke, M. O., Ogunmiloro, O. M., Akinwumi, C. T., & Raji, R. A. (2019). Mathematical Modeling and Stability Analysis of a SIRV Epidemic Model with Non-linear Force of Infection and Treatment. Communications in Mathematics and Applications, X(4), 717-731.

Pertiwi, M. D. (2020). Distribusi Kejadian Hepatitis B Menurut Cakupan Imunisasi HB-0 dan Cakupan K4 Di Jawa Timur. Jurnal Ikesma, 16(1), 36-44.

S. Tsukuda, K. W. (2020). “Hepatitis B virus biology and life cycleâ€. Antiviral Research, 182(104925), 1-10.

Zhang, Z., & Upadhyay, R. K. (2021). Dynamical analysis for a deterministic SVIRS epidemic model with Holling type II incidence rate and multiple delays. Results in Physics, XXIV(104181), 1-13.

Downloads

PlumX Metrics

Published

2023-08-30

How to Cite

Darajat, P. P., Cipta, B. S. I., Nuruddin, I. F., & Balqis, D. A. I. (2023). Dynamical Analysis and Optimal Control of SVIR Hepatitis B Model Spread in Malang. Vygotsky: Jurnal Pendidikan Matematika Dan Matematika, 5(2), 77–90. https://doi.org/10.30736/voj.v5i2.698