The Effect of Nanoparticles on Drug Distribution in The Mathematical Model of Blood Flow


  • Yolanda Norasia Walisongo State Islamic University
  • Ajeng Oxa Nisa Walisongo State Islamic University
  • Sitti Rosnafi'an Sumardi Cendrawasih University



Mathematics Modeling, Fluid Flow, Blood Flow, Nanoparticles


This research examines the influence of nanoparticles in the distribution of drugs in healthy blood flow on linear, angular velocity and blood temperature. Construction and simplification of a blood flow model based on boundary layer equations, dimensionless variables, stream functions, and similarity variables. The initial step is to establish a dimensional blood flow model. Using dimensionless variables, the equation is simplified into a dimensionless equation. A similarity equation is generated by converting the non-dimensional equation. The nanoparticles used are . At the linear velocity and temperature of blood flow  is in the highest position. At the angular velocity of blood flow, the position of blood flow with   nanoparticles is in the uppermost position. This research is used to estimate the velocity and temperature of blood flow with the influence of nanoparticles as drug distribution.


Download data is not yet available.

Author Biography

Yolanda Norasia, Walisongo State Islamic University

Prodi Matematika UIN Walisongo


Ahmed, A., & Nadeem, S. (2016). The study of (Cu, TiO2, Al2O3) nanoparticles as antimicrobials of blood flow through diseased arteries. Journal of Molecular Liquids, 216, 615–623.

Ali, Z., Rabiei, F., Rashidi, M. M., & Khodadadi, T. (2022). A fractional-order mathematical model for COVID-19 outbreak with the effect of symptomatic and asymptomatic transmissions. European Physical Journal Plus, 137(3).

Alsenafi, A., & Ferdows, M. (2022). Similarity and Finite Difference Solution on Biomagnetic Flow and Heat Transfer of Blood-Fe3O4 through a Thin Needle. Journal of Mathematics, 2022.

Bertaglia, G., Caleffi, V., & Valiani, A. (2020). Modeling blood flow in viscoelastic vessels: the 1D augmented fluid–structure interaction system. Computer Methods in Applied Mechanics and Engineering, 360.

Dhange, M., Sankad, G., Safdar, R., Jamshed, W., Eid, M. R., Bhujakkanavar, U., Gouadria, S., & Chouikh, R. (2022). A mathematical model of blood flow in a stenosed artery with post-stenotic dilatation and a forced field. PLoS ONE, 17(7 July).

Fahmi, M. Z. (2020). Nanoteknologi dalam Perspektif Kesehatan. Airlangga University Press.

Gul, T., Usman, M., Khan, I., Nasir, S., Saeed, A., Khan, A., & Ishaq, M. (2021). Magneto hydrodynamic and dissipated nanofluid flow over an unsteady turning disk. Advances in Mechanical Engineering, 13(7), 1–11.

Hu, X., Liu, X., Wang, H., Xu, L., Wu, P., Zhang, W., Niu, Z., Zhang, L., & Gao, Q. (2023). A novel physics-based model for fast computation of blood flow in coronary arteries. BioMedical Engineering Online, 22(1).

Karthik, A., Kumar, P. T. V. P., & Radhika, T. S. L. (2022). A Mathematical Model for Blood Flow Accounting for the Hematological Disorders. Computational and Mathematical Biophysics, 10(1), 184–198.

Khalid, A. K., Othman, Z. S., & M Shafee, C. T. M. N. (2021). A review of mathematical modelling of blood flow in human circulatory system. Journal of Physics: Conference Series, 1988(1).

Norasia, Y., Tafrikan, M., Ghani, M., Islam, U., Walisongo, N., Technology, D. S., & Airlangga, U. (2022). Laminar Viscous Fluid Flow with Micro-rotation Capabilities through Cylindrical Surface. 6(4), 865–875.


Owasit, P., & Sriyab, S. (2021). Mathematical modeling of non-Newtonian fluid in arterial blood flow through various stenoses. Advances in Difference Equations, 2021(1).

Saeed, A., Khan, N., Gul, T., Kumam, W., Alghamdi, W., & Kumam, P. (2021). The flow of blood-based hybrid nanofluids with couple stresses by the convergent and divergent channel for the applications of drug delivery. Molecules, 26(21).

Saqr, K. M., Tupin, S., Rashad, S., Endo, T., Niizuma, K., Tominaga, T., & Ohta, M. (2020). Physiologic blood flow is turbulent. Scientific Reports, 10(1), 1–12.

Shah, S. R., & Kumar, R. (2020). Mathematical Modeling of Blood Flow With the Suspension of Nanoparticles Through a Tapered Artery With a Blood Clot. Frontiers in Nanotechnology, 2.

Singh, P., Pandit, S., Mokkapati, V. R. S. S., Garg, A., Ravikumar, V., & Mijakovic, I. (2018). Gold nanoparticles in diagnostics and therapeutics for human cancer. In International Journal of Molecular Sciences (Vol. 19, Issue 7). MDPI AG.

Ullah, H., Lu, D., Siddiqui, A. M., Haroon, T., & Maqbool, K. (2020). Hydrodynamical study of creeping maxwell fluid flow through a porous slit with uniform reabsorption and wall slip. Mathematics, 8(10), 1–22.

Wei, H., Moria, H., Nisar, K. S., Ghandour, R., Issakhov, A., Sun, Y. L., Kaood, A., & Youshanlouei, M. M. (2021). Effect of volume fraction and size of Al2O3nanoparticles in thermal, frictional and economic performance of circumferential corrugated helical tube. Case Studies in Thermal Engineering, 25(February), 100948.

Yoshikawa, Y. ., Nakamoto, M. ., & Nakamura, M. et al. (2020). On-site evaluation of CT-based fractional flow reserve using simple boundary conditions for computational fluid dynamics. Int J Cardiovasc Imaging, 36, 337–346.

Yusuf, A., Almotairy, A. R. Z., Henidi, H., Alshehri, O. Y., & Aldughaim, M. S. (2023). Nanoparticles as Drug Delivery Systems: A Review of the Implication of Nanoparticles’ Physicochemical Properties on Responses in Biological Systems. In Polymers (Vol. 15, Issue 7). MDPI.

Zaman, A., Ali, N., & Sajjad, M. (2019). Effects of nanoparticles (Cu, TiO2, Al2O3) on unsteady blood flow through a curved overlapping stenosed channel. Mathematics and Computers in Simulation, 156, 279–293.


PlumX Metrics



How to Cite

Norasia, Y., Nisa, A. O., & Sumardi, S. R. (2024). The Effect of Nanoparticles on Drug Distribution in The Mathematical Model of Blood Flow. Vygotsky: Jurnal Pendidikan Matematika Dan Matematika, 6(1), 51–60.