Model Matematika Penyakit Kolera Melalui Kontak Antar Individu, Sumber Air, dan Lalat

Authors

  • Muhammad Manaqib Matematika, FST, UIN Syarif Hidayatullah Jakarta
  • Fauziah Irma Matematika, FST, UIN Syarif Hidayatullah Jakarta
  • Bagus Fajar Apriyanto Matematika, FST, UIN Syarif Hidayatullah Jakarta

DOI:

https://doi.org/10.30736/voj.v4i2.539

Keywords:

Analisis Sensitifitas, Kestabilan Titik Ekuilibrium, Kolera, SIWR

Abstract

Penelitian ini mengembangkan model matematika penyebaran penyakit kolera menggunakan model SIWR yang ditambahkan dengan vektor lalat. Berdasarkan model matematika tersebut, dicari titik kestimbangan bebas penyakit, titik kestimbangan endemik, dan bilangan reproduksi dasar (R0). Hasil analisis kestabilan titik kestimbangan bebas penyakit diperoleh bersifat stabil asimtotik lokal saat R0<1. Simulasi model dilakukan dengan nilai-nilai parameter yang diambil dari beberapa jurnal dan mengambil kasus di Haiti. Hasilnya penyakit kolera di Haiti dalam waktu mendatang akan menghilang.Selanjutnya dilakukan analisis sensitivitas parameter-parameter model terhadap R0, hasilnya terdapat dua parameter yang dominan berpengaruh terhadap penyebaran penyakit kolera yakni  laju kontak infektif individu rentan dengan individu terinfeksi  dan  tingkat kesembuhan individu dari penyakit kolera.

Downloads

Download data is not yet available.

References

Anggaraditya, B. A. (2015). Menekan Laju Penyebaran Kolera di Asia dengan 3SW (Sterilization, Sewage, Sources, and Water Purification). Intisari Sains Medis, 3(1), 83–87. https://doi.org/10.15562/ism.v3i1.71

Basumatary, C., Kaur, R., & Kaur, S. (2021). Treatment Strategies Of Cholera: A Review. European Journal of Translational and Clinical Medicine, 7, 2020. https://www.researchgate.net/publication/348555388_Treatment_Strategies_Of_Cholera_A_Review

Blow, N. S., Salomon, R. N., Garrity, K., Reveillaud, I., Kopin, A., Jackson, F. R., & Watnick, P. I. (2005). Vibrio cholerae infection of Drosophila melanogaster mimics the human disease cholera. PLoS Pathogens, 1(1), 0092–0098. https://doi.org/10.1371/journal.ppat.0010008

Brooks, G. F. , K. C. C. J. S. B. S. A. M. dan T. A. M. (2010). Medical Microbiology, Twenty-Sixth edition. McGraw-Hill Companies.

Capasso, V., & Paveri-Fontana, S. L. (1979). A mathematical model for the 1973 cholera epidemic in the European Mediterranean region. Revue d’épidémiologie et de Santé Publiqué, 27(2), 121–132. https://pubmed.ncbi.nlm.nih.gov/538301/

Chitnis, N., Hyman, J. M., & Cushing, J. M. (2008). Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model. Bulletin of Mathematical Biology, 70(5), 1272–1296. https://doi.org/10.1007/s11538-008-9299-0

Codeço, C. T. (2001). Endemic and epidemic dynamics of cholera: the role of the aquatic reservoir. BMC Infectious Diseases, 1(1), 1–14. https://doi.org/10.1186/1471-2334-1-1

Diekmann, O., Heesterbeek, J. A. P., & Roberts, M. G. (2009). The construction of next-generation matrices for compartmental epidemic models. Journal of the Royal Society, Interface / the Royal Society, 7, 873–885. https://doi.org/10.1098/rsif.2009.0386

Dolstad, H. A., Franke, M. F., Vissieres, K., Jerome, J.-G., Ternier, R., & Ivers, L. C. (2021). Factors associated with diarrheal disease among children aged 1–5 years in a cholera epidemic in rural Haiti. PLOS Neglected Tropical Diseases, 15(10), e0009726-. https://doi.org/10.1371/journal.pntd.0009726

Filary-Szczepanik, M. (2020). The discipline in the times of Cholera. In Global Affairs (Vol. 6, Issue 3, pp. 243–246). Taylor & Francis. https://doi.org/10.1080/23340460.2020.1842226

Ghosh, M., Chandra, P., Sinha, P., & Shukla, J. B. (2004). Modelling the spread of carrier-dependent infectious diseases with environmental effect. Applied Mathematics and Computation, 152(2), 385–402. https://doi.org/10.1016/S0096-3003(03)00564-2

Global Health Observatory (GHO) Data. (2015). Cholera Cases Reported. Http://Www.Who.Int/Gho/Epidemic.Diseases/Cholera/Epidemics_text/En/.

Khamesipour, F., Lankarani, K. B., Honarvar, B., & Kwenti, T. E. (2018). A systematic review of human pathogens carried by the housefly (Musca domestica L.). BMC Public Health, 18(1). https://doi.org/10.1186/s12889-018-5934-3

Lawley, R., Curtis, L., & Davis, J. (2012). The food safety hazard guidebook. Royal Society of Chemistry.

Liao, S., & Wang, J. (2011). Stability analysis and application of a mathematical cholera model. Mathematical Biosciences and Engineering, 8(3). https://doi.org/10.3934/mbe.2011.8.733

Luquero, F., Rondy, M., Boncy, J., Munger, A., Mekaoui, H., Rymshaw, E., Page, A.-L., Toure, B., Degail, M. A., Nicolas, S., Grandesso, F., Ginsbourger, M., Polonsky, J., Alberti, K., Terzian, M., Olson, D., Porten, K., & Ciglenecki, I. (2016). Mortality Rates during Cholera Epidemic, Haiti, 2010–2011. Emerging Infectious Disease Journal, 22(3), 410. https://doi.org/10.3201/eid2203.141970

Manaqib, M., Fauziah, I., & Mujiyanti, M. (2019). Mathematical Model for MERS-COV Disease Transmission with Medical Mask Usage and Vaccination. InPrime: Indonesian Journal of Pure and Applied Mathematics, 1(2), 30–42. https://doi.org/10.15408/inprime.v1i2.13553

Mandal, S., Mandal, M. D., & Pal, N. K. (2011). Cholera: a great global concern. Asian Pacific Journal of Tropical Medicine, 4(7), 573–580. https://doi.org/10.1016/s1995-7645(11)60149-1

Marquez, J. G., & Krafsur, E. S. (2002). Gene flow among geographically diverse housefly populations (Musca domestica L.): a worldwide survey of mitochondrial diversity. Journal of Heredity, 93(4), 254–259. https://doi.org/10.1093/jhered/93.4.254

Mukandavire, Z., Liao, S., Wang, J., Gaff, H., Smith, D. L., & Morris, J. G. (2011). Estimating the reproductive numbers for the 2008-2009 cholera outbreaks in Zimbabwe. Proceedings of the National Academy of Sciences of the United States of America, 108(21), 8767–8772. https://doi.org/10.1073/pnas.1019712108

Najar, A. M., Sudarsana, I. W., Albab, M. U., & Andhika, S. (2022). Machine Learning untuk Identifikasi Jenis Kanker Darah (Leukemia). Vygotsky: Jurnal Pendidikan Matematika Dan Matematika, 4(1), 47–56. https://doi.org/10.30736/voj.v4i1.493

Perko, L. (2000). Differential Equations and Dynamical Systems. Springer.

Posny, D., Wang, J., Mukandavire, Z., & Modnak, C. (2015). Analyzing transmission dynamics of cholera with public health interventions. Mathematical Biosciences, 264, 38–53. https://doi.org/10.1016/j.mbs.2015.03.006

Pourabbas, E., d’Onofrio, A., & Rafanelli, M. (2001). A method to estimate the incidence of communicable diseases under seasonal fluctuations with application to cholera. Applied Mathematics and Computation, 118(2–3), 161–174. https://doi.org/10.1016/S0096-3003(99)00212-X

Resmawan, R., & Yahya, L. (2020). Sensitifity Analysis of Mathematical Model of Coronavirus Disease (COVID-19) Transmission. Cauchy, 6(2), 91. https://doi.org/10.18860/ca.v6i2.9165

Robertson, S. L., Eisenberg, M. C., & Tien, J. H. (2013). Heterogeneity in multiple transmission pathways: Modelling the spread of cholera and other waterborne disease in networks with a common water source. Journal of Biological Dynamics, 7(1), 254–275. https://doi.org/10.1080/17513758.2013.853844

Silva, A. J., & Benitez, J. A. (2016). Vibrio cholerae Biofilms and Cholera Pathogenesis. PLOS Neglected Tropical Diseases, 10(2), e0004330-. https://doi.org/10.1371/journal.pntd.0004330

Tien, J. H., & Earn, D. J. D. (2010). Multiple transmission pathways and disease dynamics in a waterborne pathogen model. Bulletin of Mathematical Biology, 72(6), 1506–1533. https://doi.org/10.1007/s11538-010-9507-6

Van Den Driessche, P., & Watmough, J. (2002). Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Mathematical Biosciences, 180(1–2), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6

Wiggins, S. (2003). Introduction to Applied Nonlinear Dynamical Systems and Chaos (second). Springer.

World Health Rangkings. (2015). Health Profile: Haiti. Http://Www.Worldlifeexpectancy.Com/Country-Health-Profile/Haiti .

Yahya, L., Nurwan, N., & Resmawan, R. (2022). Menentukan Waktu Optimal untuk Pembuatan Kerajinan Sulaman Karawo Menggunakan Aljabar Max-Plus. Vygotsky: Jurnal Pendidikan Matematika Dan Matematika, 4(1), 23–34. https://doi.org/10.30736/voj.v4i1.442

PlumX Metrics

Published

2022-08-20

How to Cite

Manaqib, M., Irma, F., & Apriyanto, B. F. (2022). Model Matematika Penyakit Kolera Melalui Kontak Antar Individu, Sumber Air, dan Lalat. Vygotsky: Jurnal Pendidikan Matematika Dan Matematika, 4(2), 79–92. https://doi.org/10.30736/voj.v4i2.539