Panel Data Regression Modeling of North Sumatra Province's Gross Regional Domestic Product for 2019-2023

Authors

  • Ester Maylani Universitas Islam Negeri Sumatera Utara
  • Rina Filia Sari Universitas Islam Negeri Sumatera Utara

DOI:

https://doi.org/10.30736/voj.v7i2.1279

Keywords:

Data Panel, Gross Regional Domestic Product , (GRDP), Economic Factors

Abstract

Regional economic growth is influenced by various factors that need to be analyzed accurately to support the formulation of effective policies. This study aims to analyze the influence of economic factors on the Gross Regional Domestic Product (GRDP) in North Sumatra Province. The main issue raised is the need for an appropriate model to understand the relationship between economic variables and GRDP. This study uses panel data from 33 districts/cities during the period 2019–2023 obtained from official sources. Through Chow, Hausman, and Lagrange Multiplier tests, the Fixed Effect model was selected. The results indicate that population size, number of poor people, and Human Development Index (HDI) significantly influence RDP.

Downloads

Download data is not yet available.

References

Adityaningrum, A. (2024). Robust Least Median of Square Modelling Using Seemingly Unrelated Regression With Generalized Least Square on Panel Data for Tuberculosis Cases. Barekeng, 18(4), 2293–2306. https://doi.org/10.30598/barekengvol18iss4pp2293-2306

Amaliah, E. N., Darnah, D., & Sifriyani, S. (2020). Regresi data panel dengan pendekatan common effect model (CEM), fixed effect model (FEM) dan random effect model (REM)(Studi kasus: persentase penduduk miskin menurut Kabupaten/Kota di Kalimantan Timur tahun 2015-2018). ESTIMASI: Journal of Statistics and Its Application, 1(2), 106–115.

Brzozowska-Rup, K. (2020). Modelling road traffic safety indices by means of regression with panel data. Engineering Management in Production and Services, 12(4), 40–51. https://doi.org/10.2478/emj-2020-0026

Castro, J. R. (2024). Active Modeling of Solar Panel Performance using K-Means and Multiple Linear Regression with Environmental Variables and Historical Data. In Iop Conference Series Earth and Environmental Science (Vol. 1434, Nomor 1). https://doi.org/10.1088/1755-1315/1434/1/012010

Delmar, F. (2022). Modeling new-firm growth and survival with panel data using event magnitude regression. Journal of Business Venturing, 37(5). https://doi.org/10.1016/j.jbusvent.2022.106245

Elviera, C. D., & Irawan, D. (2020). Pengaruh Indeks Pembangunan Manusia Dan Produk Domestik Bruto (PDRB) Terhadap Kemiskinan Provinsi Sumatera Utara. Bisnis-Net Jurnal Ekonomi dan Bisnis, 3(2), 103–109.

Gujarati, D. N. (2021). Essentials of econometrics. Sage Publications.

Hasibuan, R. R. A., Kartika, A., Suwito, F. A., & Agustin, L. (2022). Pengaruh Produk Domestik Regional Bruto (PDRB) terhadap Tingkat Kemiskinan Kota Medan. Reslaj: Religion Education Social Laa Roiba Journal, 4(3), 683–693.

Heydari, A. (2021). Application of nonlinear mathematical modeling in panel data analyses of the pecking order theory in capital structure using multiple regression: Evidence from the tehran stock exchange. International Journal of Nonlinear Analysis and Applications, 12(2), 2383–2401. https://doi.org/10.22075/ijnaa.2021.5376

Hidaka, K. (2024). Regression modeling of subjective probability of river inundation with epistemic uncertainty: a short-term panel data analysis. Natural Hazards, 120(7), 6343–6375. https://doi.org/10.1007/s11069-024-06446-y

Hutagalung, I. P. (2022). Analisis Regresi Data Panel Dengan Pendekatan Common Effect Model (CEM), Fixed Effect Model (FEM) dan Random Effect Model (REM)(Studi Kasus: IPM Sumatera Utara Periode 2014–2020). FARABI: Jurnal Matematika Dan Pendidikan Matematika, 5(2), 217–226.

Indrasetianingsih, A., & Wasik, T. K. (2020). Model Regresi Data Panel Untuk Mengetahui Faktor Yang Mempengaruhi Tingkat Kemiskinan Di Pulau Madura. Jurnal Gaussian, 9(3), 355–363.

Jafari, F. (2024). Data-Driven Performance Modeling of Solar Panels Using Polynomial Regression. In 2024 International Conference on Control Automation and Diagnosis Iccad 2024. https://doi.org/10.1109/ICCAD60883.2024.10554048

Kosmaryati, K., Handayani, C. A., Isfahani, R. N., & Widodo, E. (2019). Faktor-faktor yang mempengaruhi kriminalitas di Indonesia tahun 2011-2016 dengan regresi data panel. Indonesian Journal of Applied Statistics, 2(1), 10–20.

Mobonggi, I. D., Achmad, N., Resmawan, R., & Hasan, I. K. (2022). Analisis Regresi Data Panel Dengan Pendekatan Common Effect Model Dan Fixed Effect Model Pada Kasus Produksi Tanaman Jagung. INTERVAL: Jurnal Ilmiah Matematika, 2(2), 52–67.

Musolesi, A. (2025). Modelling green knowledge production and environmental policies with semiparametric panel data regression models. Empirical Economics, 68(1), 327–352. https://doi.org/10.1007/s00181-024-02634-8

Nandita, D. A., Alamsyah, L. B., Jati, E. P., & Widodo, E. (2019). Regresi data panel untuk mengetahui faktor-faktor yang mempengaruhi PDRB di Provinsi DIY tahun 2011-2015. Indonesian Journal of Applied Statistics, 2(1), 42–52.

Nguyen, M. C. (2023). Estimation of Systems of Regression Equations with Unbalanced Panel Data and Random Effects: Modelling Food-Expenditure Shares in Vietnamese Households. In Contributions to Economics (hal. 609–625). https://doi.org/10.1007/978-981-99-4902-1_20

Priyatno, D. (2023). Olah data sendiri analisis regresi linier dengan SPSS dan analisis regresi data panel dengan Eviews. Penerbit Andi.

Ratnasari, V. (2023). Statistical modeling to analyze factors affecting the middle-income trap in Indonesia using panel data regression. In Methodsx (Vol. 11). https://doi.org/10.1016/j.mex.2023.102379

Silalahi, D., Sitepu, R., & Tarigan, G. (2014). Analisis ketahanan pangan provinsi Sumatera Utara dengan metode regresi data panel. Saintia Matematika, 2(3), 237–251.

Szwacka-Mokrzycka, J. (2020). The panel data regression concept in consumption modelling. Economic Annals Xxi, 185(9), 61–69. https://doi.org/10.21003/EA.V185-06

Tohir, S. S., & Utomo, Y. P. (2023). Analisis Faktor-Faktor Yang Mempengaruhi Investasi Di Provinsi Banten 2016-2020. eprints.ums.ac.id.

Verlita, T. (2022). Panel data regression modeling of net enrollment rate at senior high school/equal levels in NTT Province 2015-2019. In Aip Conference Proceedings (Vol. 2641). https://doi.org/10.1063/5.0117382

Zebua, T. N. (2022). Pengaruh Produk Domestik Regional Bruto (PDRB) Terhadap Tingkat Kemiskinan Di Provinsi Sumatera Utara (2011-2020). Jurnal Syntax Fusion, 2(03), 439–453.

Downloads

PlumX Metrics

Published

2025-08-31

How to Cite

Maylani, E., & Sari, R. F. (2025). Panel Data Regression Modeling of North Sumatra Province’s Gross Regional Domestic Product for 2019-2023. Vygotsky: Jurnal Pendidikan Matematika Dan Matematika, 7(2), 155–168. https://doi.org/10.30736/voj.v7i2.1279