Comparison of Decomposition and Triple Exponential Smoothing Methods to Improve Rice Production Forecasting in East Java Province
DOI:
https://doi.org/10.30736/voj.v7i1.1119Keywords:
Rice Production, Forecasting, Triple Exponential Smoothing, DecompositionAbstract
This study forecasts rice production in East Java using Triple Exponential Smoothing (Holt-Winters) and Decomposition. Data includes rice production in dry milled grain (GKG) from January 2018 until December 2023, sourced from the Central Statistics Agency (BPS) of East Java. The analysis identifies the Holt-Winters Multiplicative model as the most effective, with the lowest error values: Mean Absolute Percentage Error (MAPE) of 0.1452, Mean Absolute Deviation (MAD) of 0.1078, and Mean Squared Error (MSE) of 0.0286 during training, and MAPE of 0.1974, MAD of 0.1909, and MSE of 0.0858 during testing. The Holt-Winters Multiplicative model is recommended for future rice production predictions, providing reliable method for accurate forecasting, and aiding in future rice demand planning in East Java.
Downloads
References
Afiyah, S. N., Kurniawan, F., & Aqromi, N. L. (2021). Rice Production Forecasting System in East Java Using Double Exponential Smoothing Method. Procedia of Engineering and Life Science, 1(2). https://doi.org/10.21070/pels.v1i2.988
Andriawan, Y. S., & Muflihah, N. (2023). Analisis Peramalan Permintaan Karton Box UD Berkah Jaya Offset Menggunakan Metode Time Series. Jurnal Penelitian Bidang Inovasi & Pengelolaan Industri, 3(1), 23–35. https://doi.org/10.33752/invantri.v3i1.5004
Hasanah, A. (2023). Prediksi Produksi Padi di Kabupaten Sumenep Menggunakan Metode Single Exponential Smoothing. Jurnal Arjuna : Publikasi Ilmu Pendidikan, Bahasa Dan Matematika, 1(4), 264–272. https://doi.org/10.61132/arjuna.v1i4.136
Hendra, C. (2020). Model Peramalan Volume Pengunjung Taman Rekreasi The Leu Garden Menggunakan Metode Dekomposisi Trend Moment. Islamic Science and Technology, 5(1), 1–14. https://doi.org/http://dx.doi.org/10.30829/jistech.v5i1.7658
Hyndman, R. J., & Athanasopoulos, G. (2018). Forecasting: Principles and Practice (Second). OTexts.
Ilmiah, A., Wowor, A. D., Studi, P., Informatika, T., Informasi, F. T., Kristen, U., & Wacana, S. (2020). Peramalan Jumlah Kebutuhan Pangan Kabupaten Wonogiri Menggunakan Triple Exponential Smoothing. 672016029.
Islamiati, N., AP, I., & Wajidi, F. (2020). Metode Triple Exponential Smoothing (TES) dalam Memprediksi Jumlah Kasus Penyakit di RSUD Majene. Seminar Nasional Informatika 2020, 19–27.
Kristiyanti, D. A., & Sumarmo, Y. (2020). Penerapan Metode Multiplicative Decomposition ( Seasonal ) Untuk Peramalan Persediaan Barang. Sistem Komputer Dan Kecerdasan Buatan, 3(2), 45–51. https://doi.org/https://doi.org/10.47970/siskom-kb.v3i2.145
Kurniawan, A., Susanti, Y., & Pratiwi, H. (2023). Pemodelan Produksi Padi di Indonesia Menggunakan Regresi Robust Estimasi Generalized M. Matematika Dan Statistika, 7(2721), 2–8.
Makridakis, S., Wheelwright, S. C., & Hyndman, R. J. (1998). Forecasting: Methods and Applications. John Wiley & Sons.
Mursidah, Yunina, Nurhasanah, & Yuni, D. (2021). Perbandingan Metode Exponential Smoothing dan Metode Decomposition Untuk Meramalkan Persediaan Beras ( Studi Kasus Divre Bulog Lhokseumawe ). Visioner & Strategis, 10(1), 37–46.
Negara, I. B. K. D. S., Negara, I. P. K., & Arso, N. Y. (2023). Prediksi Hasil Panen Padi di Kabupaten Jembrana Menggunakan Metode Naive Bayes Classifier. Jurnal Teknologi Informasi Dan Komputer, 9(3), 260–265. https://doi.org/10.36002/jutik.v9i3.2501
Nurdiansyah, D., Ma’ady, M. N. P., Kartini, A. Y., & Yuliana, U. A. (2024). The Use of A Geographically Weighted Regression Model to Analyze Predictors of The Rice Supply in Bojonegoro. Vygotsky, 6(1), 1–12. https://doi.org/10.30736/voj.v6i1.706
Nurdiansyah, D., & Sulistiawan, A. (2023). Dasar Pemrograman Komputer Dengan Open Source Software R (Untuk Bidang Sains dan Teknologi). CV. AA. Rizky.
Nurdiansyah, D., & Wafa, K. (2021). Penerapan Model Exponential Smoothing berbasis Metode Evolutionary pada Kasus Covid-19 dan DBD di Bojonegoro. Jurnal Kesehatan Vokasional, 6(3), 174–181. https://doi.org/10.22146/jkesvo.65937
Nurwahdania, S., & Sulistijanti, W. (2020). Musiman Autoregressive Terintegrasi Moving Average dengan Metode Exogenous Input ( SARIMAX ). Prosiding Seminar Nasional Edusaintek, 451–461.
Putra, R. N., Aziz, A., & Zaini, A. (2023). Implementasi Metode Simple Regresi Linear dan Single Exponential Smoothing untuk Memprediksi Produksi Padi Jawa Timur. Terapan Sains & Teknologi, 5(2), 96–102.
Satyawati, N. M. W., Candiasa, I. M., & Mertasari, N. M. S. (2021). Prediksi Penduduk Miskin di Indonesia Menggunakan Analisis Dekomposisi. Delta: Jurnal Ilmiah Pendidikan Matematika, 9(1), 77. https://doi.org/10.31941/delta.v9i1.1248
Widiyawati, A., Susilo, H., Mu’jijah, M., Suyamto, S., & Abdilah, N. A. (2023). Weed Community Structure in Patia Village Rice Fields Patia Sub-District, Pandeglang Regency. Biology, Medicine, & Natural Product Chemistry, 12(1), 423–430. https://doi.org/10.14421/biomedich.2023.121.423-430
Zamahzari, A., & Puryantoro, P. (2023). Forecasting Produksi Padi dan Konsumsi Beras di Provinsi Jawa Timur. Jurnal Pertanian Cemara, 20(1), 27–38. https://doi.org/10.24929/fp.v20i1.2542
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Nur Aisyatul Lathifah, Denny Nurdiansyah, Alif Yuanita Kartini

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright:
Authors who publish their manuscripts in this Journal agree to the following conditions:
- Copyright of any article on Vygotsky: Jurnal Pendidikan Matematika dan Matematika is held solely by the author under the Creative Commons Attribution 4.0 International license (CC BY NC SA).
- Authors can submit papers separately, arrange non-exclusive distribution of manuscripts that have been published in this journal into other versions (e.g. sending to the author's institutional repository, publication in a book, etc.) by acknowledging that the manuscript has been published for the first time in Vygotsky: Jurnal Pendidikan Matematika dan Matematika.
License:
Vygotsky: Jurnal Pendidikan Matematika dan Matematika is published under the terms of the Creative Commons Attribution 4.0 International License (CC BY NC SA). This license permits anyone to copy and redistribute this material in any form or format, compile, modify and develop this material for any purpose as long as it is not for commercial purposes. Additionally, anyone must provide credit and distribute contributions under the license of the creator of the original work.