The Use of A Geographically Weighted Regression Model to Analyze Predictors of The Rice Supply in Bojonegoro
DOI:
https://doi.org/10.30736/voj.v6i1.706Keywords:
Rice Supply, Harvested Area, Rice Production, Population, GWRAbstract
The research goal would be to understand all potential influences on the amount of rice available within every sub-district in the Bojonegoro district. Geographically weighted regression (GWR), a technique used for this study, uses kernels: adaptive bisquare, fixed bisquare, adaptive gaussian, and fixed gaussian. The state office for food security and farming inside the Bojonegoro district provided secondary statistics for the 2018 year that included information on the population, the harvested area, the rice production, and the rice supply. The outcomes from the kernel-fixed gaussian elected model using AIC minimum criteria for the GWR model. The implementation's conclusion is due to the impact of variety in locations. The next research recommendation is a time-series spatial study of the rice problem.
Downloads
References
Aprilianti, V. A., & Harkeni, A. (2021). Pengaruh Indeks Pembangunan Manusia Terhadap Ketimpangan Wilayah Di Provinsi Jambi. Jurnal Khazanah Intelektual, 5(2), 1142–1160. https://doi.org/10.37250/newkiki.v5i2.111
Azies, H. Al. (2019). Analisis Pengaruh Fasilitas Kesehatan terhadap Kematian Bayi di Jawa Timur Menggunakan Pendekatan Geographically Weighted Regression. Jurnal Penelitian Dan Pengembangan Pelayanan Kesehatan, 3(2), 131–141. https://doi.org/10.22435/jpppk.v3i2.2431
Cahya, M. R., Wibowo, A. S., & Bukhari, A. (2018). Keberlanjutan Ketersediaan Beras Di Kabupaten Pandeglang Provinsi Banten. Jurnal Agribisnis Terpadu, 11(2), 181–195. https://doi.org/10.33512/jat.v11i2.5095
Cholid, F., Trishnanti, D., & Azies, H. Al. (2019). Pemetaan Faktor-Faktor yang Mempengaruhi Stunting pada Balita dengan Geographically Weighted Regression (GWR). Semnakes 2019, 156–165.
Darsan, & Dawud, M. Y. (2021). Strategi Pemasaran Beras Pada Agroindustri di Kabupaten Bojonegoro. Jurnal Ilmiah Ilmu-Ilmu Pertanian, 15(1), 65–71.
Ilyas, A., Noer, M., & Wahyuni, I. (2020). Analisis Faktor-Faktor Yang Memengaruhi Ketersediaan Beras Di Indonesia. Mimbar Agribisnis: Jurnal Pemikiran Masyarakat Ilmiah Berwawasan Agribisnis, 6(2), 740–753. https://doi.org/10.25157/ma.v6i2.3456
Li, S., Zhou, C., Wang, S., Gao, S., & Liu, Z. (2019). Spatial heterogeneity in the determinants of urban form: An analysis of Chinese cities with a GWR approach. Sustainability (Switzerland), 11(2), 479. https://doi.org/10.3390/su11020479
Lu, B., Brunsdon, C., Charlton, M., & Harris, P. (2017). Geographically weighted regression with parameter-specific distance metrics. International Journal of Geographical Information Science, 31(5), 982–998. https://doi.org/10.1080/13658816.2016.1263731
Nisa, K. (2022). Penerapan Model Geographically Weighted Poisson Regression untuk Demam Berdarah Dengue Di Kabupaten Bojonegoro. 1(1), 12–22.
Pemerintah. (2012). Undang - Undang Republik Indonesia Nomor 18 Tahun 2012 Tentang Pangan.
Pratama, A. R., Sudrajat, & Harini, R. (2019). Analisis Ketersediaan dan Kebutuhan Beras di Indonesia Tahun 2018. Media Komunikasi Geografi, 20(2), 101–114. https://doi.org/10.23887/mkg.v20i2.19256
Pratiwi, Y. D., Mariani, S., & Putriaji. (2019). Pemodelan Regresi Spasial Menggunakan Geographically Weighted Regression. Unnes Journal of Mathematics, 8(2), 32–41.
Pujiati, S., Pertiwi, A., Silfia, C. C., Ibrahim, D. M., & Nur Hafida, S. H. (2020). Analisis Ketersediaan, Keterjangkauan Dan Pemanfaatan Pangan Dalam Mendukung Tercapainya Ketahanan Pangan Masyarakat Di Provinsi Jawa Tengah. Jurnal Sosial Ekonomi Pertanian, 16(2). https://doi.org/10.20956/jsep.v16i2.10493
Putu, L., Hendayanti, N. P. N., & Suniantara, I. K. P. (2020). Perbandingan Pembobotan Seemingly Unrelated Regression – Spatial Durbin Model Untuk Faktor Kemiskinan Dan Pengangguran. Jurnal Varian, 3(2), 51–64. https://doi.org/10.30812/varian.v3i2.596
Supardi, S., Riptanti, E. W., & Qonita, A. (2020). Pemetaan Kondisi Kerawanan Pangan di Tingkat Wilayah di Kabupaten Bojonegoro (Food Insecurity Conditions Mapping in Bojonegoro Regency). Jurnal Ilmu-Ilmu Pertanian, 16(2).
Susanto, A., Hamzah, A., Irnawati, R., Nurdin, H. S., & Supadminingsih, N. (2020). Peran Sektor Perikanan Tangkap dalam Mendukung Ketahanan Pangan Perikanan di Provinsi Banten. 1, 9–17.
Tizona, A. R., Goejantoro, R., & Wasono. (2017). Pemodelan Geographically Weighted Regression (Gwr) Dengan Fungsi Pembobot Adaptive Kernel Bisquare Untuk Angka Kesakitan Demam Berdarah di Kalimantan Timur Tahun 2015. Jurnal Eksponensial, 8(1), 87–94.
Utami, N. P. M., Sumarjaya, I. W., & Srinadi, I. G. A. M. (2019). Memodelkan Rasio Ketersediaan Beras Menggunakan Regresi Data Panel Dinamis. E-Jurnal Matematika, 8(3), 199–203. https://doi.org/10.24843/mtk.2019.v08.i03.p253
Wijoyo, B. H. R., Hidayat, S. I., & Abidin, Z. (2020). Analisis Ketersediaan Beras Di Jawa Timur. Berkala Ilmiah AGRIDEVINA, 8(2), 83–98. https://doi.org/10.33005/adv.v8i2.1799
Yang, J., Bao, Y., Zhang, Y., Li, X., & Ge, Q. (2018). Impact of Accessibility on Housing Prices in Dalian City of China Based on a Geographically Weighted Regression Model. Chinese Geographical Science, 28(3), 505–515. https://doi.org/10.1007/s11769-018-0954-6
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Ummi Agustin Yuliana, Denny Nurdiansyah, Alif Yuanita Kartini
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright:
Authors who publish their manuscripts in this Journal agree to the following conditions:
- Copyright of any article on Vygotsky: Jurnal Pendidikan Matematika dan Matematika is held solely by the author under the Creative Commons Attribution 4.0 International license (CC BY NC SA).
- Authors can submit papers separately, arrange non-exclusive distribution of manuscripts that have been published in this journal into other versions (e.g. sending to the author's institutional repository, publication in a book, etc.) by acknowledging that the manuscript has been published for the first time in Vygotsky: Jurnal Pendidikan Matematika dan Matematika.
License:
Vygotsky: Jurnal Pendidikan Matematika dan Matematika is published under the terms of the Creative Commons Attribution 4.0 International License (CC BY NC SA). This license permits anyone to copy and redistribute this material in any form or format, compile, modify and develop this material for any purpose as long as it is not for commercial purposes. Additionally, anyone must provide credit and distribute contributions under the license of the creator of the original work.