Antiviral Properties and Potential of Ginger (Zingiber Officinale) and Its Derivatives: A Systematic Review

Authors

  • Nouman Ahmad University of Indonesia https://orcid.org/0009-0009-0699-0862
  • Hamdan Ahmad Universitas Singaperbangsa Karawang
  • Dewi Syarifah Department of Biochemistry and Molecular Biology, Faculty of Medicine Universitas Indonesia, Jakarta 10430, Indonesia
  • Vivian Soetikno Department of Pharmacology & Therapeutics, Faculty of Medicine, University of Indonesia, Jakarta 10430, Indonesia

DOI:

https://doi.org/10.30736/seaj.v7i2.1205

Keywords:

Systematic Review, Virucidal Activity, Antiviral Properties, Ginger Extracts, Zingiber officinale

Abstract

Antiviral Properties and Potential of Ginger (Zingiber Officinale) and Its Derivatives: A Systematic Review. Ginger has long been valued in traditional medicine for its therapeutic benefits. Recently, its antiviral capabilities have attracted significant interest, highlighting its potential as a natural antiviral agent. This systematic review seeks to thoroughly evaluate the antiviral effects of ginger and its active compounds, providing valuable insights to support future research and clinical applications in natural antiviral therapies. A comprehensive electronic search was undertaken across PubMed, Embase, and Scopus databases, employing MeSH terms, Emtree, and relevant synonyms to capture studies on ginger and its antiviral effects. The initial search yielded 531 records, which were de-duplicated and subsequently screened by title and abstract using Rayyan software. Fourteen studies specifically addressing antiviral effects against human pathogens met the inclusion criteria. This systematic review was conducted in strict accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines to ensure rigorous reporting of findings. The majority of included studies were in vitro, revealing anti-viral effects of ginger against various viruses, including Influenza A, Chikungunya, Dengue, hRSV, HSV-2, and SARS-CoV-2 in different cell lines across various concentrations. In addition, Ginger extracts also demonstrated efficacy against Influenza A in both in vivo and in ovo studies, and a randomized controlled trial showcased encouraging antiviral effects targeting SARS-CoV-2. Ginger shows promising antiviral effects in most of the in vitro studies. Translating these findings to in vivo models is imperative for clinical relevance. Further in vivo research is essential before progressing to human studies to ascertain ginger's potential as an effective antiviral agent

Downloads

Download data is not yet available.

References

Acosta, P. L., Byrne, A. B., Hijano, D. R., & Talarico, L. B. (2020). Human Type I Interferon Antiviral Effects in Respiratory and Reemerging Viral Infections. Journal of Immunology Research, 2020. https://doi.org/10.1155/2020/1372494

Ahkam, A. H., Hermanto, F. E., Alamsyah, A., Aliyyah, I. H., & Fatchiyah, F. (2020). Virtual prediction of antiviral potential of ginger (Zingiber officinale) bioactive compounds against spike and mpro of SARS-CoV-2 protein. https://doi.org/10.23869/50

Al-Sanea, M. M., Abelyan, N., Abdelgawad, M. A., Musa, A., Ghoneim, M. M., Al-Warhi, T., Aljaeed, N., Alotaibi, O. J., Alnusaire, T. S., Abdelwahab, S. F., Helmy, A., Abdelmohsen, U. R., & Youssif, K. A. (2021). Strawberry and ginger silver nanoparticles as potential inhibitors for SARS-CoV-2, assisted by in silico modeling and metabolic profiling. Antibiotics (Basel), 10(7), 824. https://doi.org/10.3390/antibiotics10070824

Altindis, M., & Kahraman Kilbas, E. P. (2023). Managing Viral Emerging Infectious Diseases via Current and Future Molecular Diagnostics. In Diagnostics (Vol. 13, Issue 8). https://doi.org/10.3390/diagnostics13081421

Ballester, P., Cerdá, B., Arcusa, R., Marhuenda, J., Yamedjeu, K., & Zafrilla, P. (2022). Effect of Ginger on Inflammatory Diseases. Molecules (Basel, Switzerland), 27(21). https://doi.org/10.3390/molecules27217223

Chang, J. S., Wang, K. C., Yeh, C. F., Shieh, D. E., & Chiang, L. C. (2013). Fresh ginger (Zingiber officinale) has anti-viral activity against human respiratory syncytial virus in human respiratory tract cell lines. Journal of Ethnopharmacology, 145(1), 146–151. https://doi.org/10.1016/j.jep.2012.10.043

Denyer, C. V., Jackson, P., Loakes, D. M., Ellis, M. R., & Young, D. A. (1994). Isolation of antirhinoviral sesquiterpenes from ginger (Zingiber officinale). Journal of Natural Products, 57(5), 658–662. https://doi.org/10.1021/np50107a017

Dutta, A., Hsiao, S. H., Hung, C. Y., Chang, C. S., Lin, Y. C., Lin, C. Y., Chen, T. C., & Huang, C. T. (2023). Effect of [6]-gingerol on viral neuraminidase and hemagglutinin-specific T cell immunity in severe influenza. Phytomedicine Plus, 3(1), 0–7. https://doi.org/10.1016/j.phyplu.2022.100387

Edo, G. I., Onoharigho, F. O., Jikah, A. N., Ezekiel, G. O., Essaghah, A. E. A., Ekokotu, H. A., Ugbune, U., Oghroro, E. E. A., Emakpor, O. L., Ainyanbhor, I. E., Akpoghelie, P. O., Ojulari, A. E., Okoronkwo, K. A., & Owheruo, J. O. (2024). Evaluation of the physicochemical, phytochemical, and anti-bacterial potential of Zingiber officinale (ginger). Food Chemistry Advances, 4, 100625. https://doi.org/https://doi.org/10.1016/j.focha.2024.100625

Glitscher, M., Himmelsbach, K., Woytinek, K., Johne, R., Reuter, A., Spiric, J., Schwaben, L., Grünweller, A., & Hildt, E. (2018). Inhibition of hepatitis E virus spread by the natural compound silvestrol. Viruses, 10(6). https://doi.org/10.3390/v10060301

Goncalves, B. C., Lopes Barbosa, M. G., Silva Olak, A. P., Belebecha Terezo, N., Nishi, L., Watanabe, M. A., Marinello, P., Zendrini Rechenchoski, D., Dejato Rocha, S. P., & Faccin-Galhardi, L. C. (2021). Antiviral therapies: advances and perspectives. Fundamental & Clinical Pharmacology, 35(2), 305–320. https://doi.org/10.1111/fcp.12609

Hasan, T. N., Naqvi, S. S., Rehman, M. U., Ullah, R., Ammad, M., Arshad, N., Ain, Q. U., Perween, S., & Hussain, A. (2023). Ginger ring compounds as an inhibitor of spike binding protein of alpha, beta, gamma, and delta variants of SARS-CoV-2: An in-silico study. Narra J, 3(1), e98. https://doi.org/10.52225/narra.v3i1.98

Hayati, R. F., Better, C. D., Denis, D., Komarudin, A. G., Bowolaksono, A., Yohan, B., & Sasmono, R. T. (2021). [6]-Gingerol inhibits chikungunya virus infection by suppressing viral replication. BioMed Research International, 2021. https://doi.org/10.1155/2021/6623400

Imanishi, N., Andoh, T., Mantani, N., Sakai, S., Terasawa, K., Shimada, Y., Sato, M., Katada, Y., Ueda, K., & Ochiai, H. (2006). Macrophage-mediated inhibitory effect of Zingiber officinale Rosc, a traditional Oriental herbal medicine, on the growth of influenza A/Aichi/2/68 virus. American Journal of Chinese Medicine, 34(1), 157–169. https://doi.org/10.1142/S0192415X06003722

Johnson, J. B., Mani, J. S., White, S., Brown, P., & Naiker, M. (2021). Quantitative profiling of gingerol and its derivatives in Australian ginger. Journal of Food Composition and Analysis, 104, 104190. https://doi.org/https://doi.org/10.1016/j.jfca.2021.104190

José-Rita, B. J., Bertin, G. K., Ibrahime, S. K., Yannick, K., Erick-Kévin, B. G., Riphin, K. L., Ceylan, R., David, N. J., Zengin, G., & Mireille, D. (2022). Study of the chemical and in vitro cytotoxic activities of essential oils (EOs) of two plants from the Ivorian flora (Lippia multiflora and Zingiber officinale) and their antiviral activities against non-enveloped viruses. South African Journal of Botany, 151, 387–393. https://doi.org/10.1016/j.sajb.2022.03.053

Kamankesh, F., Ganji, A., Ghazavi, A., & Mosayebi, G. (2023). The Anti-Inflammatory Effect of Ginger Extract on the Animal Model of Multiple Sclerosis. Iranian Journal of Immunology : IJI, 20(2), 211–218. https://doi.org/10.22034/iji.2023.97156.2482

Kaushik, S., Jangra, G., Kundu, V., Yadav, J. P., & Kaushik, S. (2020). Anti-viral activity of Zingiber officinale (Ginger) ingredients against the Chikungunya virus. VirusDisease, 31(3), 270–276. https://doi.org/10.1007/s13337-020-00584-0

Kawaoka, Y. (2023). Addressing the Threat of Emerging Viral Infections. The Keio Journal of Medicine, 72(1), 27. https://doi.org/10.2302/kjm.ABSTRACT_72_1-2

Kharisma, V. D., Utami, S. L., Rizky, W. C., Dings, T. G. A., Ullah, M. E., Jakhmola, V., & Nugraha, A. P. (2023). Molecular docking study of Zingiber officinale Roscoe compounds as a mumps virus nucleoprotein inhibitor. Dent. J., 56(1), 23–29. https://doi.org/10.20473/j.djmkg.v56.i1.p23-29

Koch, C., Reichling, J., Schneele, J., & Schnitzler, P. (2008). Inhibitory effect of essential oils against herpes simplex virus type 2. Phytomedicine, 15(1–2), 71–78. https://doi.org/10.1016/j.phymed.2007.09.003

Leka, K., Hamann, C., Desdemoustier, P., Frédérich, M., Garigliany, M. M., & Ledoux, A. (2022). In vitro antiviral activity against SARS-CoV-2 of common herbal medicinal extracts and their bioactive compounds. Phytotherapy Research, 36(8), 3013–3015. https://doi.org/10.1002/ptr.7463

Li Jian, Zhang Jia, & Zhou Litao. (2022). Effects of Ginger on Clinical Features and Disease Severity of Patients With Severe Acute Respiratory Syndrome Due To Covid-19: a Randomized Controlled Trial Study. Acta Medica Mediterranea, 38(625), 625–630. https://doi.org/10.19193/0393-6384

Mehyar, N. (2023). Coronaviruses SARS-CoV, MERS-CoV, and SARS-CoV-2 helicase inhibitors: a systematic review of in vitro studies. Journal of Virus Eradication, 9(2). https://doi.org/10.1016/j.jve.2023.100327

Mukherjee, S., Weiner, W. S., Schroeder, C. E., Simpson, D. S., Hanson, A. M., Sweeney, N. L., Marvin, R. K., Ndjomou, J., Kolli, R., Isailovic, D., Schoenen, F. J., & Frick, D. N. (2014). Ebselen inhibits hepatitis C virus NS3 helicase binding to nucleic acid and prevents viral replication. ACS Chemical Biology, 9(10), 2393–2403. https://doi.org/10.1021/cb500512z

Downloads

PlumX Metrics

Published

2025-06-04

How to Cite

Ahmad, N., Ahmad, H., Dewi Syarifah, & Vivian Soetikno. (2025). Antiviral Properties and Potential of Ginger (Zingiber Officinale) and Its Derivatives: A Systematic Review. Science Education and Application Journal, 7(2), 129–142. https://doi.org/10.30736/seaj.v7i2.1205