Deep Learning Model in Science Learning: Bibliometric Analysis

Authors

  • Nurina Happy Universitas PGRI Semarang, Indonesia
  • Tomi Apra Santosa Akademi Teknik Adikarya
  • Siti Fatimah Hiola Universitas Negeri Makassar
  • Ifa Safira Universitas Bosowa
  • Nur Latifah Universitas Islam Negeri Maulana Malik Ibrahim Malang
  • Dewanto Universitas Negeri Surabaya
  • Muh. Safar Universitas Muhammadiyah Bone
  • Aat Ruchiat Nungraha Universitas Padjadjaran

DOI:

https://doi.org/10.30736/seaj.v7i1.1160

Keywords:

Deep Learning; Science Learning; Bibliometrics; Education

Abstract

The deep learning model is one of the learning models that can be applied in science learning. Research related to deep learning has grown very rapidly in recent years. Research on deep learning models has produced many theoretical and empirical findings. Many trends have emerged to highlight the complexity and dynamics of deep learning models in science learning.  This study aims to discover the latest trends in deep learning model research in science learning. This study uses a bibliometric approach of analysis based on the Google Scholar database. Based on this study's title, abstract, and keywords, it produced 872 studies from 2015-2024. The results of this study show that the deep learning model in this learning has increased significantly in 2022. The increase in research on deep learning models shows the importance of applying deep learning models in learning.

Downloads

Download data is not yet available.

References

Agbo, F. J., Oyelere, S. S., Suhonen, J., & Tukiainen, M. (2021). Scientific production and thematic breakthroughs in smart learning environments: a bibliometric analysis. Smart Learning Environments, 8(1), 1–25. https://doi.org/10.1186/s40561-020-00145-4

Ajibade, S. S. M., Zaidi, A., Al Luhayb, A. S. M., Adediran, A. O., Voumik, L. C., & Rabbi, F. (2023). New Insights into the Emerging Trends Research of Machine and Deep Learning Applications in Energy Storage: A Bibliometric Analysis and Publication Trends. International Journal of Energy Economics and Policy, 13(5), 303–314. https://doi.org/10.32479/ijeep.14832

Ajibade, S. S. M., Zaidi, A., Bekun, F. V., Adediran, A. O., & Bassey, M. A. (2023). A research landscape bibliometric analysis on climate change for last decades: Evidence from applications of machine learning. Heliyon, 9(10), e20297. https://doi.org/10.1016/j.heliyon.2023.e20297

Ali, L., Alnajjar, F., Khan, W., Serhani, M. A., & Al Jassmi, H. (2022). Bibliometric Analysis and Review of Deep Learning-Based Crack Detection Literature Published between 2010 and 2022. Buildings, 12(4). https://doi.org/10.3390/buildings12040432

Amini, M., Sharifani, K., & Rahmani, A. (2023). Machine Learning Model Towards Evaluating Data Gathering Methods in Manufacturing and Mechanical Engineering. International Journal of Applied Science and Engineering Research, 15(4), 349–362. https://ssrn.com/abstract=4331917

Asnur, L., Jalinus, N., Faridah, A., Apra, T., Ambiyar, R. D., & Utami, F. (2024). Video-blogs ( Vlogs ) -based Project : A Meta Analysis. 14(5), 1553–1557.

Bhattacharya, S. (2019). Some salient aspects of machine learning research: A bibliometric analysis. Journal of Scientometric Research, 8(2), 85–92. https://doi.org/10.5530/jscires.8.2.26

Bidwell, R. V., Mishra, S., Patil, S., Shaw, K., Vora, D. R., Kotecha, K., & Zope, B. (2022). Deep Learning Approaches for Video Compression: A Bibliometric Analysis. Big Data and Cognitive Computing, 6(2). https://doi.org/10.3390/bdcc6020044

Chandra, A., Tünnermann, L., Löfstedt, T., & Gratz, R. (2023). Transformer-based deep learning for predicting protein properties in the life sciences. ELife, 12, 1–25. https://doi.org/10.7554/eLife.82819

Chen, X., Xie, H., Qin, S. J., Chai, Y., Tao, X., & Wang, F. L. (2024). Cognitive-Inspired Deep Learning Models for Aspect-Based Sentiment Analysis: A Retrospective Overview and Bibliometric Analysis. Cognitive Computation, 3518–3556. https://doi.org/10.1007/s12559-024-10331-y

Chen, X., Zou, D., Xie, H., & Wang, F. L. (2021). Past, present, and future of smart learning: a topic-based bibliometric analysis. International Journal of Educational Technology in Higher Education, 18(1). https://doi.org/10.1186/s41239-020-00239-6

Choudhary, K., DeCost, B., Chen, C., Jain, A., Tavazza, F., Cohn, R., Park, C. W., Choudhary, A., Agrawal, A., Billinge, S. J. L., Holm, E., Ong, S. P., & Wolverton, C. (2022). Recent advances and applications of deep learning methods in materials science. Npj Computational Materials, 8(1). https://doi.org/10.1038/s41524-022-00734-6

Dawana, I. R., Dwikoranto, Setiani, R., & Marsini. (2022). E-Book Learning Research in Physics Education during the Last Five Years: A Review and Bibliometric Study. Journal of Physics: Conference Series, 2392(1). https://doi.org/10.1088/1742-6596/2392/1/012016

Dewanto, D., Wantu, H. M., Dwihapsari, Y., Santosa, T. A., & Agustina, I. (2023). Effectiveness of The Internet of Things (IoT)-Based Jigsaw Learning Model on Students’ Creative Thinking Skills: A- Meta-Analysis. Jurnal Penelitian Pendidikan IPA, 9(10), 912–920. https://doi.org/10.29303/jppipa.v9i10.4964

Djeki, E., Dégila, J., Bondiombouy, C., & Alhassan, M. H. (2022). E-learning bibliometric analysis from 2015 to 2020. Journal of Computers in Education, 9(4), 727–754. https://doi.org/10.1007/s40692-021-00218-4

Edy Nurtamam, M., Apra Santosa, T., Aprilisia, S., Rahman, A., & Suharyat, Y. (2023). Meta-analysis: The Effectiveness of Iot-Based Flipped Learning to Improve Students’ Problem-Solving Abilities. Jurnal Edumaspul, 7(1), 2023–1492.

Ichsan, I., Suharyat, Y., Santosa, T. A., & Satria, E. (2023). Effectiveness of STEM-Based Learning in Teaching 21st Century Skills in Generation Z Student in Science Learning: A Meta-Analysis. Jurnal Penelitian Pendidikan IPA, 9(1), 150–166. https://doi.org/10.29303/jppipa.v9i1.2517

Ivanova, M., Grosseck, G., & Holotescu, C. (2024). Unveiling Insights: A Bibliometric Analysis of Artificial Intelligence in Teaching. Informatics, 11(1). https://doi.org/10.3390/informatics11010010

Jescovitch, L. N., Scott, E. E., Cerchiara, J. A., Merrill, J., Urban-Lurain, M., Doherty, J. H., & Haudek, K. C. (2021). Comparison of Machine Learning Performance Using Analytic and Holistic Coding Approaches Across Constructed Response Assessments Aligned to a Science Learning Progression. Journal of Science Education and Technology, 30(2), 150–167. https://doi.org/10.1007/s10956-020-09858-0

Khairi, S. S. M., Bakar, M. A. A., Alias, M. A., Bakar, S. A., Liong, C. Y., Rosli, N., & Farid, M. (2022). Deep Learning on Histopathology Images for Breast Cancer Classification: A Bibliometric Analysis. Healthcare (Switzerland), 10(1). https://doi.org/10.3390/healthcare10010010

Khashman, A., Sadikoglu, G., & Khashman, Z. (2020). Using Deep Learning as Prediction Model in Poll-Driven Social Science Applications. International Conference on …. https://doi.org/10.1007/978-3-030-64058-3_51

Li, L., Huang, X., & Liu, P. (2022). … Development of Science and Technology Finance and Logistics Industry in the Yangtze River Economic Belt: Coupling Analysis Based on Deep Learning Model. Computational Intelligence and …. https://doi.org/10.1155/2022/5185190

Li, Y., & Zhong, Z. (2024). Decoding the application of deep learning in neuroscience: a bibliometric analysis. Frontiers in Computational Neuroscience, 18(October), 1–9. https://doi.org/10.3389/fncom.2024.1402689

Luciana, O., Sjoraida, D. F., Santosa, T. A., Nugraha, A. R., & Zain, A. (2024). The Effect of Technology-Based Management Learning on Children's Organizational Skills Development : A Meta-Analysis Approach. Jurnal Obsesi: Jurnal Pendidikan Anak Usia Dini, 8(6), 1777–1786. https://doi.org/10.31004/obsesi.v8i6.6593

Miraftabzadeh, S. M., Martino, A. Di, Longo, M., & Zaninelli, D. (2024). Deep Learning in Power Systems: A Bibliometric Analysis and Future Trends. IEEE Access, 12(November), 163172–163196. https://doi.org/10.1109/ACCESS.2024.3491914

Mu, B., Chen, L., Yuan, S. J., & Qin, B. (2023). A radiative transfer deep learning model coupled into WRF with a generic Fortran torch adaptor. Frontiers in Earth Science, 11, 1149566.

Oktarina, K., Suhaimi, Santosa, T. A., Razak, A., Irdawati, Ahda, Y., Lufri, & Putri, D. H. (2021). Meta-Analysis: The Effectiveness of Using Blended Learning on Multiple Intelligences and Student Character Education During the Covid-19 Period. International Journal of Education and Curriculum Application, 4(3), 184–192. http://journal.ummat.ac.id/index.php/IJECA/article/view/5505

Ovcharenko, E., Koblov, D., & Gulenko, O. (2024). X-ray analysis of parameters of infraorbital foramen Bibliometric analysis of deep learning applications in dentistry Assessment of dental anxiety in children using different methods. International Dental Journal, 74, S216. https://doi.org/10.1016/j.identj.2024.07.044

Rustam, F., Khalid, M., Aslam, W., Rupapara, V., Mehmood, A., & Choi, G. S. (2021). A performance comparison of supervised machine learning models for COVID-19 tweets sentiment analysis. PLoS ONE, 16(2), 1–23. https://doi.org/10.1371/journal.pone.0245909

Santosa, T. A., & Aprilisia, S. (2022). Analisis Pendekatan Saintifik Dalam Pembelajaran Ipa Selama Pandemi Covid-19 Di Sekolah Dasar. Jurnal Didika : Wahana Ilmiah Pendidikan Dasar, 8(1), 92–101. https://doi.org/10.29408/didika.v8i1.5776

Saputra, N. A., Hamidah, I., & Setiawan, A. (2023). A Bibliometric Analysis of Deep Learning for Education Research. Journal of Engineering Science and Technology, 18(2), 1258–1276.

Septaria, K., Fatharani, A., Dewanti, B. A., & Najawa, W. C. (2024). Designing Pirposal-learning based Module integrated with Socio-Scientific Issue to Enhance Students’ Scientific Reasoning Skill. Indonesian Journal of Mathematics and Natural Science Education, 5(2), 122-134.

Irnananda, L., Septaria, K., & Susanti, I. (2024). Pengaruh Model Pembelajaran Pirposal Terhadap Science Attitude Siswa Sekolah Menengah Pertama Pada Pembelajaran IPA Topik Asam Basa. Jurnal Penelitian Sains dan Pendidikan (JPSP), 4(2), 117-133.

Vinasti, N. F., Dewanti, B. A., & Septaria, K. (2024). Empowering Middle School Science Student: Innovative Articulate Storyline Strategies for Enhancing Problem-Solving and Independent Learning. ICoCSE Proceedings, 1.

Septaria, K., & Rismayanti, R. (2022). The effect of scientific approach on Junior High school students’ Scientific Creativity and Cognitive Learning Outcomes. Jurnal Penelitian dan Pengkajian Ilmu Pendidikan: e-Saintika, 6(3), 173-189.

Septaria, K., & Fatharani, A. (2022). Manga versus webtoon: Alternative science learning module based on Dr Stone. Jurnal Inovasi Pendidikan IPA, 8(1), 11-22.

Septaria, K., Fatharani, A., & Yasa, A. D. (2022). COVID-19 is a Conspiracy Disease? Diagnostic Mental Models and Students' Cognitive Abilities. Jurnal Penelitian Dan Pengkajian Ilmu Pendidikan: E-Saintika, 6(1), 18-32.

Septaria, K., & Fatharani, A. (2022). Analisis Penggunaan Software PlantNet Terhadap Pemerolehan Konsep Dan Keterampilan Prosedural Siswa. Indonesian Journal of Educational Science (IJES), 5(1), 73-83.

Septaria, K. (2019). Developing Character Students Trough Spot Capturing Method in Science Education Learning. Science Education and Application Journal, 1(1), 39-45.

Shoaib, M., Shah, B., EI-Sappagh, S., Ali, A., Ullah, A., Alenezi, F., Gechev, T., Hussain, T., & Ali, F. (2023). An advanced deep learning models-based plant disease detection: A review of recent research. Frontiers in Plant Science, 14(March), 1–22. https://doi.org/10.3389/fpls.2023.1158933

Sobral, S. R. (2021). Two decades of research in e-learning: A deep bibliometric analysis. International Journal of Information and Education Technology, 11(9), 398–404. https://doi.org/10.18178/ijiet.2021.11.9.1541

Valencia-Arias, A., González-Ruiz, J. D., Verde Flores, L., Vega-Mori, L., Rodríguez-Correa, P., & Sánchez Santos, G. (2024). Machine Learning and Blockchain: A Bibliometric Study on Security and Privacy. Information (Switzerland), 15(1). https://doi.org/10.3390/info15010065

Wang, R., Huang, S., Wang, P., Shi, X., Li, S., Ye, Y., Zhang, W., Shi, L., Zhou, X., & Tang, X. (2024). Bibliometric analysis of the application of deep learning in cancer from 2015 to 2023. Cancer Imaging, 24(1), 1–17. https://doi.org/10.1186/s40644-024-00737-0

Wantu, H. M., Muis, A., Zain, A., Hiola, S. F., Agustina, I., Santosa, T. A., Yastanti, U., & Nugraha, A. R. (2024). Effectiveness of Think-Pair-Share and STEM Models on Critical Thinking in Early Childhood Education. Jurnal Obsesi: Jurnal Pendidikan Anak Usia Dini, 8(5), 1320–1330. https://doi.org/10.31004/obsesi.v8i5.6202

Wibawa, I. P. D., Kallista, M., & ... (2022). … Activity Recognition Using Deep Learning and Nonparametric Model with Some Exchanges in Karl Popper’s Viewpoint and Kuhn’s Paradigm in Philosophy of Science. JMECS (Journal of …. https://journals.telkomuniversity.ac.id/jmecs/article/view/2408

Wibawa, I. P. D., Kallista, M., & Phaijoo, G. R. (n.d.). Human Action Recognition Using Deep Learning and Nonparametric Model With Some Exchanges in Karl Popper’s Viewpoint and Kuhn’s Paradigm: A …. In academia.edu. https://www.academia.edu/download/102469281/2408-121-17384-5-10-20221111.pdf

Wissler, S., Rocca, J., & Kubitschek, D. (2005). D Eep I Mpact C Omet E Ncounter : Test, 1, 1–20.

Yang, Z., Yu, C. H., & Buehler, M. J. (2021). Deep learning model to predict complex stress and strain fields in hierarchical composites. Science Advances, 7(15), 1–10. https://doi.org/10.1126/SCIADV.ABD7416

Yuan, J., Liu, Y., & Zhao, F. (2017). Exploration and Analysis of Computer Science Teaching Model in Colleges Based on Deep Learning. pdf.hanspub.org. https://pdf.hanspub.org/ces20170200000_96769832.pdf

Zhong, S., Zhang, K., Bagheri, M., Burken, J. G., Gu, A., Li, B., Ma, X., Marrone, B. L., Ren, Z. J., Schrier, J., Shi, W., Tan, H., Wang, T., Wang, X., Wong, B. M., Xiao, X., Yu, X., Zhu, J. J., & Zhang, H. (2021). Machine Learning: New Ideas and Tools in Environmental Science and Engineering. Environmental Science and Technology, 55(19), 12741–12754. https://doi.org/10.1021/acs.est.1c01339

Zulkifli, Z., Satria, E., Supriyadi, A., & Santosa, T. A. (2022). Meta-analysis: The effectiveness of the integrated STEM technology pedagogical content knowledge learning model on the 21st-century skills of high school students in the science department. Psychology, Evaluation, and Technology in Educational Research, 5(1), 32–42. https://doi.org/10.33292/petier.v5i1.144

Zulyusri, Z., Santosa, T. A., Festiyed, F., Yerimadesi, Y., Yohandri, Y., Razak, A., & Sofianora, A. (2023). Effectiveness of STEM Learning Based on Design Thinking in Improving Critical Thinking Skills in Science Learning: A Meta-Analysis. Jurnal Penelitian Pendidikan IPA, 9(6), 112–119. https://doi.org/10.29303/jppipa.v9i6.3709

Downloads

PlumX Metrics

Published

2025-01-31

How to Cite

Happy, N., Tomi Apra Santosa, Siti Fatimah Hiola, Ifa Safira, Nur Latifah, Dewanto, Muh. Safar, & Aat Ruchiat Nungraha. (2025). Deep Learning Model in Science Learning: Bibliometric Analysis. Science Education and Application Journal, 7(1), 22 – 30. https://doi.org/10.30736/seaj.v7i1.1160