Activation of ZnCl2 and KOH Carbon from Bark of Salak Wedi as a Material for Making Supercapacitor Electrodes

Aprillia Dwi Ardianti

Abstract


An activated carbon is a potential material that can be used as electrodes in super capacitors. It has a higher energy density than batteries and fuel cells, and a higher power density than conventional capacitors. This study was carried out by using activated carbon from the bark of salak wedi with various graded activators such as ZnCl2 and KOH. The physical characteristics of the activated carbon from the bark of salak wedi were analyzed using a Scanning Electron Microscope (SEM) to see its powder morphology. While, X-ray diffraction (XRD) is  used to examine the structure of the bark of activated carbon that  that has the potential to make electrodes of super capacitors . The results of SEM with graded activation had fewer pores, were not evenly distributed and tended to agglomerate compared to the activated carbon sample of salak bark which was activated once

Full Text:

PDF

References


Bagheri, N., & Abedi, J. (2009). Preparation of high surface area activated carbon from corn by chemical activation using potassium hydroxide. Chemical Engineering Research and Design, 87(8), 1059–1064.

Deininger, A., Tropentag, D., & others. (2002). Challenges to organic farming and sustainable land use in the tropics and subtropics: book of abstracts.

Fitriana, V. N. (2014). Sintesis dan karakterisasi superkapasitor berbasis nanokomposit TiO2/C.

Ghosh, A., do Amaral Razzino, C., Dasgupta, A., Fujisawa, K., Vieira, L. H. S., Subramanian, S., Costa, R. S., Lobo, A. O., Ferreira, O. P., Robinson, J., & others. (2019). Structural and electrochemical properties of babassu coconut mesocarp-generated activated carbon and few-layer graphene. Carbon, 145, 175–186.

Habibah, M. D. (2016). Variasi Holding Time Suhu Aktivasi Karbon Aktif dari Tempurung Kluwak (Pangium edule) sebagai Elektroda pada Superkapasitor. Inovasi Fisika Indonesia, 5(1).

Hartanto, S., & Ratnawati, R. (2010). Pembuatan karbon aktif dari tempurung kelapa sawit dengan metode aktivasi kimia. Jurnal Sains Materi Indonesia, 12(1), 12–16.

Jain, A., Ranjan, S., Dasgupta, N., & Ramalingam, C. (2018). Nanomaterials in food and agriculture: an overview on their safety concerns and regulatory issues. Critical Reviews in Food Science and Nutrition, 58(2), 297–317.

Jin, H., Wang, X., Gu, Z., & Polin, J. (2013). Carbon materials from high ash biochar for supercapacitor and improvement of capacitance with HNO3 surface oxidation. Journal of Power Sources, 236, 285–292.

Kearns, J. P., Wellborn, L. S., Summers, R. S., & Knappe, D. R. U. (2014). 2, 4-D adsorption to biochars: Effect of preparation conditions on equilibrium adsorption capacity and comparison with commercial activated carbon literature data. Water Research, 62, 20–28.

Lempang, M., Syafii, W., & Pari, G. (2011). Struktur dan komponen arang serta arang aktif tempurung kemiri. Jurnal Penelitian Hasil Hutan, 29(3), 278–294.

Mardwianta, B. (2017). Pembangkitan Energi Listrik Pada Baterai Udara dengan Bahan Karbon Aktif dan Elektrolit Air Laut. Seminar Nasional Teknologi Informasi Dan Kedirgantaraan (SENATIK) Vol III.

Masriatini, R. (2018). Pembuatan Karbon Aktif Dari Kulit Pisang. Jurnal Redoks, 2(1), 53–57.

Mazumdar, P., Pratama, H., Lau, S.-E., Teo, C. H., & Harikrishna, J. A. (2019). Biology, phytochemical profile and prospects for snake fruit: An antioxidant-rich fruit of South East Asia. Trends in Food Science & Technology, 91, 147–158.

Nurdiansah, H., & Susanti, D. (2013). Pengaruh variasi temperatur karbonisasi dan temperatur aktivasi fisika dari elektroda karbon aktif tempurung kelapa dan tempurung Kluwak terhadap Nilai Kapasitansi Electric Double Layer Capacitor (EDLC). Jurnal Teknik ITS, 2(1), F13–F18.

Nurhidayanti, N. (2020). Pemanfaatan Karbon Aktif Dari Tempurung Kelapa Dalam Menurunkan Kadar Amonia Total Dalam Air Limbah Industri. Pelita Teknologi, 15(1), 68–76.

Permata, A. N., Permatasari, R. R. A. P., & Takwanto, A. (2019). STUDI AWAL PENGARUH SUHU DAN KONSENTRASI PADA PROSES AKTIVASI KARBON DARI KAYU HALABAN MENGGUNAKAN ZnCl2 DAN KOH. DISTILAT: JURNAL TEKNOLOGI SEPARASI, 5(2), 141–146.

Rodríguez Correa, C., Stollovsky, M., Hehr, T., Rauscher, Y., Rolli, B., & Kruse, A. (2017). Influence of the carbonization process on activated carbon properties from lignin and lignin-rich biomasses. ACS Sustainable Chemistry & Engineering, 5(9), 8222–8233.

Sayğl, H., & Güzel, F. (2016). High surface area mesoporous activated carbon from tomato processing solid waste by zinc chloride activation: process optimization, characterization and dyes adsorption. Journal of Cleaner Production, 113, 995–1004.

Susanti, F., Taer, E., & others. (n.d.). ANALISIS PERBEDAAN BAHAN AKTIVATOR DALAM PEMBUATAN ELEKTRODA SUPERKAPASITOR DARI ARANG TEMPURUNG KELAPA.

Taer, E., Taslim, R., Putri, A. W., Apriwandi, A., & Agustino, A. (2018). Activated carbon electrode made from coconut husk waste for supercapacitor application. Int. J. Electrochem. Sci, 13(12), 12072–12084.

Waluyo, H. M., Faryuni, I. D., & Muid, A. (2017). Analisis Pengaruh Ukuran Pori Terhadap Sifat Listrik Karbon Aktif Dari Limbah Tandan Sawit Pada Prototipe Baterai. Jurnal Fisika Flux: Jurnal Ilmiah Fisika FMIPA Universitas Lambung Mangkurat, 14(1), 27–33.

Zhou, Y., Fan, M., Chen, L., & Zhuang, J. (2015). Lignocellulosic fibre mediated rubber composites: An overview. Composites Part B: Engineering, 76, 180–191.




DOI: https://doi.org/10.30736/seaj.v4i1.541

Refbacks

  • There are currently no refbacks.


Indexing at:

Lisensi Creative Commons

Science Education and Application Journal (SEAJ), p-ISSN : 2656-6672 , e-ISSN: 2656-8365, is licensed under a Lisensi Creative Commons Atribusi 4.0 Internasional.